ﻻ يوجد ملخص باللغة العربية
We consider an inverse source problem in the stationary radiating transport through a two dimensional absorbing and scattering medium. Of specific interest, the exiting radiation is measured on an arc. The attenuation and scattering properties of the medium are assumed known. For scattering kernels of finite Fourier content in the angular variable, we show how to quantitatively recover the part of the isotropic sources restricted to the convex hull of the measurement arc. The approach is based on the Cauchy problem with partial data for a Beltrami-like equation associated with $A$-analytic maps in the sense of Bukhgeim, and extends authors previous work to this specific partial data case. The robustness of the method is demonstrated by the results of several numerical experiments.
An electrical potential U on bordered surface X (in Euclidien three-dimensional space) with isotropic conductivity function sigma>0 satisfies equation d(sigma d^cU)=0, where d^c is real operator associated with complex (conforme) structure on X induc
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only
We study the inverse source problem for a class of viscoelastic systems from a single boundary measurement in a general spatial dimension. We give specific reconstruction formula and stability estimate for the source in terms of the boundary measurem
In two dimensions, we consider the problem of inversion of the attenuated $X$-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of
We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoid