ﻻ يوجد ملخص باللغة العربية
The MEG inverse problem refers to the reconstruction of the neural activity of the brain from magnetoencephalography (MEG) measurements. We propose a two-way regularization (TWR) method to solve the MEG inverse problem under the assumptions that only a small number of locations in space are responsible for the measured signals (focality), and each source time course is smooth in time (smoothness). The focality and smoothness of the reconstructed signals are ensured respectively by imposing a sparsity-inducing penalty and a roughness penalty in the data fitting criterion. A two-stage algorithm is developed for fast computation, where a raw estimate of the source time course is obtained in the first stage and then refined in the second stage by the two-way regularization. The proposed method is shown to be effective on both synthetic and real-world examples.
This paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, co
This paper introduces a novel method to diagnose the source-target attention in state-of-the-art end-to-end speech recognition models with joint connectionist temporal classification (CTC) and attention training. Our method is based on the fact that
We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned for single and multiple time point MEG data, and can estimate varying numbers of dipole
We consider an inverse source problem in the stationary radiating transport through a two dimensional absorbing and scattering medium. Of specific interest, the exiting radiation is measured on an arc. The attenuation and scattering properties of the
An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to