ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive Guiding of Waves by a Periodic Array of Slits

198   0   0.0 ( 0 )
 نشر من قبل Dror Weisman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in order to guide waves, it is sufficient to periodically truncate their edges. The modes supported by this type of wave guide propagate freely between the slits, and the propagation pattern repeats itself. We experimentally demonstrate this general wave phenomenon for two types of waves: (i) plasmonic waves propagating on a metal-air interface that are periodically blocked by nanometric metallic walls, and (ii) surface gravity water waves whose evolution is recorded, the packet is truncated, and generated again to show repeated patterns. This guiding concept is applicable for a wide variety of waves.



قيم البحث

اقرأ أيضاً

The scattering of electromagnetic wave by a periodic array of nanowires is calculated by the boundary element method. The method is extended to the infinite grating near the interface between two dielectrics. A special Green function is derived that allows to study the evanescent wave. The Rayleigh--- Woods anomalies are found in the period-to-wavelength dependence of the average Pointing vector in the wave zone. For thin wires the calculations are shown to agree with the two-dimensional coupled dipole approximation.
209 - Yuqian Ye , Yi Jin 2009
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold e nhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires due to the excitation of the electric dipole-like resonance, and then effectively squeezed into and through the subwavelength slits.
Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely o n changes of the refractive index, that is on scalar properties of light. Recently, processes based on geometric Berry phases, such as manipulation of polarization states or deflection of spinning-light rays, have attracted considerable interest in the contexts of singular optics and structured light. Here, we disclose a new approach to light waveguiding, using geometric Berry phases and exploiting polarization states and their handling. This can be realized in structured three-dimensional anisotropic media, in which the optic axis lies orthogonal to the propagation direction and is modulated along it and across the transverse plane, so that the refractive index remains constant but a phase distortion can be imposed on a beam. In addition to a complete theoretical analysis with numerical simulations, we present a proof-of-principle experimental demonstration of this effect in a discrete element implementation of a geometric phase waveguide. The mechanism we introduce shows that spin-orbit optical interactions can play an important role in integrated optics and paves the way to an entire new class of photonic systems that exploit the vectorial nature of light.
We present measurements of a transmission-line network, designed for cloaking applications in the microwave region. The network is used for channelling microwave energy through an electrically dense array of metal objects, which is basically impenetr able to the impinging electromagnetic radiation. With the designed transmission-line network the waves emitted by a source placed in an air-filled waveguide, are coupled into the network and guided through the array of metallic objects. Our goal is to illustrate the simple manufacturing, assembly, and the general feasibility of these types of cloaking devices.
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures or even single molecules. While these techniques rely on coherent scattering, incoherent processes like Compton scatt ering or fluorescence emission -- often the predominant scattering mechanisms -- are generally considered detrimental for imaging applications. Here we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D structure of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا