ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of grain morphology and orientation on saturation magnetostriction of polycrystalline Terfenol-D

59   0   0.0 ( 0 )
 نشر من قبل Pablo Nieves
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we computationally study the effect of microstructure on saturation magnetostriction of Terfenol-D (Tb$_{0.27}$Dy$_{0.73}$Fe$_{2}$) by means of Finite Element Method. The model is based on the equilibrium magnetoelastic strain tensor at magnetic saturation, and shows that the crystal orientation might play a more significant role on saturation magnetostriction than the morphology of the grains. We also calculate the dependence of saturation magnetostriction on the dispersion angle of the distribution of grains in the oriented growth crystal directions $<011>$ and $<111>$, finding that not highly oriented grain distributions reduce saturation magnetostriction significantly. This result evinces the importance of high-quality control of grain orientation in the synthesis of grain-aligned polycrystalline Terfenol-D, and provides a quantitative estimation for the range of acceptable values for the dispersion angle of the distribution of the oriented grains.



قيم البحث

اقرأ أيضاً

A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient plasticity and grain-boundary theory of Gurtin (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. Journal of the Mechanics and Physics of Solids 56 (2), 640-662, is performed. The governing equations and flow laws are recast in variational form. The associated incremental problem is formulated in minimization form and provides the basis for the subsequent finite element formulation. Various choices of the kinematic measure used to characterize the ability of the grain boundary to impede the flow of dislocations are compared. An alternative measure is also suggested. A series of three-dimensional numerical examples serve to elucidate the theory.
The optimal amount of dysprosium in the highly magnetostrictive rare-earth compounds Tb$_{1-x}$Dy$_x$Fe$_2$ for room temperature applications has long been known to be $x$=0.73 (Terfenol-D). Here, we derive this value from first principles by calcula ting the easy magnetization direction and magnetostriction as a function of composition and temperature. We use crystal field coefficients obtained within density-functional theory to construct phenomenological anisotropy and magnetoelastic constants. The temperature dependence of these constants is obtained from disordered local moment calculations of the rare earth magnetic order parameter. Our calculations find the critical Dy concentration required to switch the magnetization direction at room temperature to be $x_c$=0.78, with magnetostrictions $lambda_{111}$=2700 and $lambda_{100}$=-430~ppm, close to the Terfenol-D values.
Previous studies have shown that the orientation relationships which develop in hetero-epitaxy are strongly influenced by the alignment of steps in the deposit with the pre-existing steps of the substrate. In this paper we use a combination of experi ments with computer simulations to identify the important influence of substrate step structure on the eventual orientation relationships that develop in the deposit. We have made use of Ag deposited on Ni as it has been used extensively as a model system for the study of hetero-epitaxy. This system displays a large lattice mismatch of 16%. It is shown that on any surface vicinal to Ni(111), which has two possible kinds of <110> steps (A-steps with {100} ledges and B-steps with {111} ledges), a Ag deposit adopts a single orientation relationship because only A-steps remain stable in the presence of Ag.
We report a record low thermal conductivity in polycrystalline MoS2 obtained by varying grain sizes and orientations in ultrathin films. By optimizing the sulphurisation parameters of nanometre-thick Mo layer, we could grow MoS2 films with tuneable m orphologies. The thermal conductivity is extracted from a Raman laser power-dependent study on suspended samples. The lowest value of thermal conductivity of 0.27 Wm-1K-1, which reaches a similar value as teflon, is obtained in a polycrystalline sample formed by a combination of horizontally and vertically oriented grains, with respect to the bulk (001) monocrystal. Analysis by means of molecular dynamics and finite element method simulations confirm that such grain arrangement leads to lower grain boundary conductance. We discuss the possible use of these thermal insulating films in the context of electronics and thermoelectricity.
The parameters influencing the band gap of tin sulphide thin nano-crystalline films have been investigated. Both grain size and lattice parameters are known to influence the band gap. The present study initially investigates each contribution individ ually. The experimentally determined dependency on lattice parameter is verified by theoretical calculations. We also suggest how to treat the variation of band gap as a two variable problem. The results allow us to show dependency of effective mass (reduced) on lattice unit volume.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا