ﻻ يوجد ملخص باللغة العربية
We report a record low thermal conductivity in polycrystalline MoS2 obtained by varying grain sizes and orientations in ultrathin films. By optimizing the sulphurisation parameters of nanometre-thick Mo layer, we could grow MoS2 films with tuneable morphologies. The thermal conductivity is extracted from a Raman laser power-dependent study on suspended samples. The lowest value of thermal conductivity of 0.27 Wm-1K-1, which reaches a similar value as teflon, is obtained in a polycrystalline sample formed by a combination of horizontally and vertically oriented grains, with respect to the bulk (001) monocrystal. Analysis by means of molecular dynamics and finite element method simulations confirm that such grain arrangement leads to lower grain boundary conductance. We discuss the possible use of these thermal insulating films in the context of electronics and thermoelectricity.
We report a technique for transferring large areas of the CVD-grown, few-layer MoS2 from the original substrate to another arbitrary substrate and onto holey substrates, in order to obtain free-standing structures. The method consists of a polymer- a
Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring the thermal conductivity in nanoscale, especially in two-dimensional mate
The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain bound
Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems
Thermoelectric properties of polycrystalline p-type ZrTe5 are reported in temperature (T) range 2 - 340 K. Thermoelectric power (S) is positive and reaches up to 458 uV/K at 340 K on increasing T. The value of Fermi energy 16 meV, suggests low carrie