ﻻ يوجد ملخص باللغة العربية
Dense suspensions of particles are relevant to many applications and are a key platform for developing a fundamental physics of out-of-equilibrium systems. They present challenging flow properties, apparently turning from liquid to solid upon small changes in composition or, intriguingly, in the driving forces applied to them. The emergent physics close to the ubiquitous jamming transition (and to some extent the glass and gelation transitions) provides common principles with which to achieve a consistent interpretation of a vast set of phenomena reported in the literature. In light of this, we review the current state of understanding regarding the relation between the physics at the particle scale and the rheology at the macroscopic scale. We further show how this perspective opens new avenues for the development of continuum models for dense suspensions.
The presence and the microscopic origin of normal stress differences in dense suspensions under simple shear flows are investigated by means of inertialess particle dynamics simulations, taking into account hydrodynamic lubrication and frictional con
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure
Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform perio
We develop a statistical framework for the rheology of dense, non-Brownian suspensions, based on correlations in a space representing forces, which is dual to position space. Working with the ensemble of steady state configurations obtained from simu