ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniform Convergence, Adversarial Spheres and a Simple Remedy

48   0   0.0 ( 0 )
 نشر من قبل Gregor Bachmann
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous work has cast doubt on the general framework of uniform convergence and its ability to explain generalization in neural networks. By considering a specific dataset, it was observed that a neural network completely misclassifies a projection of the training data (adversarial set), rendering any existing generalization bound based on uniform convergence vacuous. We provide an extensive theoretical investigation of the previously studied data setting through the lens of infinitely-wide models. We prove that the Neural Tangent Kernel (NTK) also suffers from the same phenomenon and we uncover its origin. We highlight the important role of the output bias and show theoretically as well as empirically how a sensible choice completely mitigates the problem. We identify sharp phase transitions in the accuracy on the adversarial set and study its dependency on the training sample size. As a result, we are able to characterize critical sample sizes beyond which the effect disappears. Moreover, we study decompositions of a neural network into a clean and noisy part by considering its canonical decomposition into its different eigenfunctions and show empirically that for too small bias the adversarial phenomenon still persists.

قيم البحث

اقرأ أيضاً

We investigate 1) the rate at which refined properties of the empirical risk---in particular, gradients---converge to their population counterparts in standard non-convex learning tasks, and 2) the consequences of this convergence for optimization. O ur analysis follows the tradition of norm-based capacity control. We propose vector-valued Rademacher complexities as a simple, composable, and user-friendly tool to derive dimension-free uniform convergence bounds for gradients in non-convex learning problems. As an application of our techniques, we give a new analysis of batch gradient descent methods for non-convex generalized linear models and non-convex robust regression, showing how to use any algorithm that finds approximate stationary points to obtain optimal sample complexity, even when dimension is high or possibly infinite and multiple passes over the dataset are allowed. Moving to non-smooth models we show----in contrast to the smooth case---that even for a single ReLU it is not possible to obtain dimension-independent convergence rates for gradients in the worst case. On the positive side, it is still possible to obtain dimension-independent rates under a new type of distributional assumption.
Deep neural networks are powerful and popular learning models that achieve state-of-the-art pattern recognition performance on many computer vision, speech, and language processing tasks. However, these networks have also been shown susceptible to ca refully crafted adversarial perturbations which force misclassification of the inputs. Adversarial examples enable adversaries to subvert the expected system behavior leading to undesired consequences and could pose a security risk when these systems are deployed in the real world. In this work, we focus on deep convolutional neural networks and demonstrate that adversaries can easily craft adversarial examples even without any internal knowledge of the target network. Our attacks treat the network as an oracle (black-box) and only assume that the output of the network can be observed on the probed inputs. Our first attack is based on a simple idea of adding perturbation to a randomly selected single pixel or a small set of them. We then improve the effectiveness of this attack by carefully constructing a small set of pixels to perturb by using the idea of greedy local-search. Our proposed attacks also naturally extend to a stronger notion of misclassification. Our extensive experimental results illustrate that even these elementary attacks can reveal a deep neural networks vulnerabilities. The simplicity and effectiveness of our proposed schemes mean that they could serve as a litmus test for designing robust networks.
In this work we derive a variant of the classic Glivenko-Cantelli Theorem, which asserts uniform convergence of the empirical Cumulative Distribution Function (CDF) to the CDF of the underlying distribution. Our variant allows for tighter convergence bounds for extreme values of the CDF. We apply our bound in the context of revenue learning, which is a well-studied problem in economics and algorithmic game theory. We derive sample-complexity bounds on the uniform convergence rate of the empirical revenues to the true revenues, assuming a bound on the $k$th moment of the valuations, for any (possibly fractional) $k>1$. For uniform convergence in the limit, we give a complete characterization and a zero-one law: if the first moment of the valuations is finite, then uniform convergence almost surely occurs; conversely, if the first moment is infinite, then uniform convergence almost never occurs.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, a line of studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give appropriate definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively. Hopefully, our works can provide a comprehensive overview and offer insights for the relevant researchers. More details of our works are available at https://github.com/gitgiter/Graph-Adversarial-Learning.
102 - Guillaume Vidot 2021
We propose the first general PAC-Bayesian generalization bounds for adversarial robustness, that estimate, at test time, how much a model will be invariant to imperceptible perturbations in the input. Instead of deriving a worst-case analysis of the risk of a hypothesis over all the possible perturbations, we leverage the PAC-Bayesian framework to bound the averaged risk on the perturbations for majority votes (over the whole class of hypotheses). Our theoretically founded analysis has the advantage to provide general bounds (i) independent from the type of perturbations (i.e., the adversarial attacks), (ii) that are tight thanks to the PAC-Bayesian framework, (iii) that can be directly minimized during the learning phase to obtain a robust model on different attacks at test time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا