ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures

143   0   0.0 ( 0 )
 نشر من قبل Davide Gerosa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review theoretical findings, astrophysical modeling, and current gravitational-wave evidence of hierarchical stellar-mass black-hole mergers. While most of the compact binary mergers detected by LIGO and Virgo are expected to consist of first-generation black holes formed from the collapse of stars, others might instead be of second (or higher) generation, containing the remnants of previous black-hole mergers. Such a subpopulation of hierarchically assembled black holes presents distinctive gravitational-wave signatures, namely higher masses, possibly within the pair-instability mass gap, and dimensionless spins clustered at the characteristic value of $sim$0.7. In order to produce hierarchical mergers, astrophysical environments need to overcome the relativistic recoils imparted to black-hole merger remnants, a condition which prefers hosts with escape speeds $gtrsim$ 100 km/s. Promising locations for efficient production of hierarchical mergers include nuclear star clusters and accretion disks surrounding active galactic nuclei, though environments that are less efficient at retaining merger products such as globular clusters may still contribute significantly to the detectable population of repeated mergers. While GW190521 is the single most promising hierarchical-merger candidate to date, constraints coming from large population analyses are becoming increasingly more powerful.

قيم البحث

اقرأ أيضاً

We investigate the evolution of supermassive binary black holes (BBHs) in galaxies with realistic property distributions and the gravitational-wave (GW) radiation from the cosmic population of these BBHs. We incorporate a comprehensive treatment of t he dynamical interactions of the BBHs with their environments by including the effects of galaxy triaxial shapes and inner stellar distributions, and generate a large number of BBH evolution tracks. By combining these BBH evolution tracks, galaxy mass functions, galaxy merger rates, and supermassive black hole-host galaxy relations into our model, we obtain the statistical distributions of surviving BBHs, BBH coalescence rates, the strength of their GW radiation, and the stochastic GW background (GWB) contributed by the cosmic BBH population. About ~1%-3% (or ~10%) of supermassive BHs at nearby galactic centers are expected to be binaries with mass ratio >1/3 (or >1/100). The characteristic strain amplitude of the GWB at frequency 1/yr is estimated to be ~$2.0^{+1.4}_{-0.8}times 10^{-16}$, and the upper bound of its results obtained with the different BH-host galaxy relations can be up to $5.4times 10^{-16}$, which await testing by future experiments (e.g., the Square Kilometer Array, FAST, Next-Generation Very Large Array). The turnover frequency of the GWB spectrum is at ~0.25nHz. The uncertainties on the above estimates and prospects for detecting individual sources are also discussed. The application of the cosmic BBH population to the Laser Interferometer Space Antenna (LISA) band provides a lower limit to the detection rate of BBHs by LISA, ~0.9/yr.
78 - J. M. Miller 2009
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar- mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe?
The cosmological evolution of the binary black hole (BH) merger rate and the energy density of the gravitational-wave (GW) background are investigated. To evaluate the redshift dependence of the BH formation rate, BHs are assumed to originate from lo w-metallicity stars, and the relations between the star formation rate, metallicity and stellar mass of galaxies are combined with the stellar mass function at each redshift. As a result, it is found that when the energy density of the GW background is scaled with the merger rate at the local Universe, the scaling factor does not depend on the critical metallicity for the formation of BHs. Also taking into account the merger of binary neutron stars, a simple formula to express the energy spectrum of the GW background is constructed for the inspiral phase. The relation between the local merger rate and the energy density of the GW background will be examined by future GW observations.
Recent gravitational wave (GW) observations by LIGO/Virgo show evidence for hierarchical mergers, where the merging BHs are the remnants of previous BH merger events. These events may carry important clues about the astrophysical host environments of the GW sources. In this paper, we present the distributions of the effective spin parameter ($chi_mathrm{eff}$), the precession spin parameter ($chi_mathrm{p}$), and the chirp mass ($m_mathrm{chirp}$) expected in hierarchical mergers. Under a wide range of assumptions, hierarchical mergers produce (i) a monotonic increase of the average of the typical total spin for merging binaries, which we characterize with ${bar chi}_mathrm{typ}equiv overline{(chi_mathrm{eff}^2+chi_mathrm{p}^2)^{1/2}}$, up to roughly the maximum $m_mathrm{chirp}$ among first-generation (1g) BHs, and (ii) a plateau at ${bar chi}_mathrm{typ}sim 0.6$ at higher $m_mathrm{chirp}$. We suggest that the maximum mass and typical spin magnitudes for 1g BHs can be estimated from ${bar chi}_mathrm{typ}$ as a function of $m_mathrm{chirp}$. The GW data observed in LIGO/Virgo O1--O3a prefers an increase in ${bar chi}_mathrm{typ}$ at low $m_mathrm{chirp}$, which is consistent with the growth of the BH spin magnitude by hierarchical mergers, at $sim 2 sigma$ confidence. A Bayesian analysis suggests that 1g BHs have the maximum mass of $sim 15$--$30,M_odot$ if the majority of mergers are of high-generation BHs (not among 1g-1g BHs), which is consistent with mergers in active galactic nucleus disks and/or nuclear star clusters, while if mergers mainly originate from globular clusters, 1g BHs are favored to have non-zero spin magnitudes of $sim 0.3$. We also forecast that signatures for hierarchical mergers in the ${bar chi}_mathrm{typ}$ distribution can be confidently recovered once the number of GW events increases to $gtrsim O(100)$.
We present post-Newtonian $N$-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericenter shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of ten BHs with initial mass of $30~M_odot$. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is $sim10$ Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate ($dot{m}_{rm c}$), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce $dot{m}_{rm c}$ especially in gas number density higher than $10^8~{rm cm}^{-3}$, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a $sim 30~M_odot$ BH binary has been detected (Abbott et al. 2016). Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few $M_odot$ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا