ﻻ يوجد ملخص باللغة العربية
We present post-Newtonian $N$-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericenter shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of ten BHs with initial mass of $30~M_odot$. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is $sim10$ Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate ($dot{m}_{rm c}$), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce $dot{m}_{rm c}$ especially in gas number density higher than $10^8~{rm cm}^{-3}$, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a $sim 30~M_odot$ BH binary has been detected (Abbott et al. 2016). Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few $M_odot$ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.
Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusiv
Rotating supermassive black holes produce jets and their origin is connected to magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by acc
We review theoretical findings, astrophysical modeling, and current gravitational-wave evidence of hierarchical stellar-mass black-hole mergers. While most of the compact binary mergers detected by LIGO and Virgo are expected to consist of first-gene
The vast majority of supermassive black holes (SMBHs) in the local universe exhibit levels of activity much lower than those expected from gas supplying rates onto the galactic nuclei, and only a small fraction of silent SMBHs can turn into active ga