ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Instance Relations for Unsupervised Feature Embedding

158   0   0.0 ( 0 )
 نشر من قبل Yifei Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the great progress achieved in unsupervised feature embedding, existing contrastive learning methods typically pursue view-invariant representations through attracting positive sample pairs and repelling negative sample pairs in the embedding space, while neglecting to systematically explore instance relations. In this paper, we explore instance relations including intra-instance multi-view relation and inter-instance interpolation relation for unsupervised feature embedding. Specifically, we embed intra-instance multi-view relation by aligning the distribution of the distance between an instances different augmented samples and negative samples. We explore inter-instance interpolation relation by transferring the ratio of information for image sample interpolation from pixel space to feature embedding space. The proposed approach, referred to as EIR, is simple-yet-effective and can be easily inserted into existing view-invariant contrastive learning based methods. Experiments conducted on public benchmarks for image classification and retrieval report state-of-the-art or comparable performance.

قيم البحث

اقرأ أيضاً

255 - Mang Ye , Xu Zhang , Pong C. Yuen 2019
This paper studies the unsupervised embedding learning problem, which requires an effective similarity measurement between samples in low-dimensional embedding space. Motivated by the positive concentrated and negative separated properties observed f rom category-wise supervised learning, we propose to utilize the instance-wise supervision to approximate these properties, which aims at learning data augmentation invariant and instance spread-out features. To achieve this goal, we propose a novel instance based softmax embedding method, which directly optimizes the `real instance features on top of the softmax function. It achieves significantly faster learning speed and higher accuracy than all existing methods. The proposed method performs well for both seen and unseen testing categories with cosine similarity. It also achieves competitive performance even without pre-trained network over samples from fine-grained categories.
In this paper, we propose an instance similarity learning (ISL) method for unsupervised feature representation. Conventional methods assign close instance pairs in the feature space with high similarity, which usually leads to wrong pairwise relation ship for large neighborhoods because the Euclidean distance fails to depict the true semantic similarity on the feature manifold. On the contrary, our method mines the feature manifold in an unsupervised manner, through which the semantic similarity among instances is learned in order to obtain discriminative representations. Specifically, we employ the Generative Adversarial Networks (GAN) to mine the underlying feature manifold, where the generated features are applied as the proxies to progressively explore the feature manifold so that the semantic similarity among instances is acquired as reliable pseudo supervision. Extensive experiments on image classification demonstrate the superiority of our method compared with the state-of-the-art methods. The code is available at https://github.com/ZiweiWangTHU/ISL.git.
The ability of deep learning to predict with uncertainty is recognized as key for its adoption in clinical routines. Moreover, performance gain has been enabled by modelling uncertainty according to empirical evidence. While previous work has widely discussed the uncertainty estimation in segmentation and classification tasks, its application on bounding-box-based detection has been limited, mainly due to the challenge of bounding box aligning. In this work, we explore to augment a 2.5D detection CNN with two different bounding-box-level (or instance-level) uncertainty estimates, i.e., predictive variance and Monte Carlo (MC) sample variance. Experiments are conducted for lung nodule detection on LUNA16 dataset, a task where significant semantic ambiguities can exist between nodules and non-nodules. Results show that our method improves the evaluating score from 84.57% to 88.86% by utilizing a combination of both types of variances. Moreover, we show the generated uncertainty enables superior operating points compared to using the probability threshold only, and can further boost the performance to 89.52%. Example nodule detections are visualized to further illustrate the advantages of our method.
Low level features like edges and textures play an important role in accurately localizing instances in neural networks. In this paper, we propose an architecture which improves feature pyramid networks commonly used instance segmentation networks by incorporating low level features in all layers of the pyramid in an optimal and efficient way. Specifically, we introduce a new layer which learns new correlations from feature maps of multiple feature pyramid levels holistically and enhances the semantic information of the feature pyramid to improve accuracy. Our architecture is simple to implement in instance segmentation or object detection frameworks to boost accuracy. Using this method in Mask RCNN, our model achieves consistent improvement in precision on COCO Dataset with the computational overhead compared to the original feature pyramid network.
146 - Hui Ying , Zhaojin Huang , Shu Liu 2019
Current instance segmentation methods can be categorized into segmentation-based methods that segment first then do clustering, and proposal-based methods that detect first then predict masks for each instance proposal using repooling. In this work, we propose a one-stage method, named EmbedMask, that unifies both methods by taking advantages of them. Like proposal-based methods, EmbedMask builds on top of detection models making it strong in detection capability. Meanwhile, EmbedMask applies extra embedding modules to generate embeddings for pixels and proposals, where pixel embeddings are guided by proposal embeddings if they belong to the same instance. Through this embedding coupling process, pixels are assigned to the mask of the proposal if their embeddings are similar. The pixel-level clustering enables EmbedMask to generate high-resolution masks without missing details from repooling, and the existence of proposal embedding simplifies and strengthens the clustering procedure to achieve high speed with higher performance than segmentation-based methods. Without any bells and whistles, EmbedMask achieves comparable performance as Mask R-CNN, which is the representative two-stage method, and can produce more detailed masks at a higher speed. Code is available at github.com/yinghdb/EmbedMask.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا