ﻻ يوجد ملخص باللغة العربية
We perform digital quantum simulation to study screening and confinement in a gauge theory with a topological term, focusing on ($1+1$)-dimensional quantum electrodynamics (Schwinger model) with a theta term. We compute the ground state energy in the presence of probe charges to estimate the potential between them, via adiabatic state preparation. We compare our simulation results and analytical predictions for a finite volume, finding good agreements. In particular our result in the massive case shows a linear behavior for non-integer charges and a non-linear behavior for integer charges, consistently with the expected confinement (screening) behavior for non-integer (integer) charges.
We perform a digital quantum simulation of a gauge theory with a topological term in Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We focus on $1+1$ dimensional quantum electrodynamics with the $t
We present numerical results for U(1) gauge theory in 2d and 4d spaces involving a non-commutative plane. Simulations are feasible thanks to a mapping of the non-commutative plane onto a twisted matrix model. In d=2 it was a long-standing issue if Wi
We discuss a new strategy for treating the complex action problem of lattice field theories with a $theta$-term based on density of states (DoS) methods. The key ingredient is to use open boundary conditions where the topological charge is not quanti
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been
We perform a digital pseudoquantum simulation of $mathbb{Z}_2$ gauge Higgs model on a $3times 3$ lattice. First we propose the quantum algorithm for the digital quantum simulation, based on Trotter decomposition, quantum adiabatic algorithm and its c