ﻻ يوجد ملخص باللغة العربية
We perform a digital quantum simulation of a gauge theory with a topological term in Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We focus on $1+1$ dimensional quantum electrodynamics with the $theta$-term known as the Schwinger model. We construct the true vacuum state of a lattice Schwinger model using adiabatic state preparation which, in turn, allows us to compute an expectation value of the fermion mass operator with respect to the vacuum. Upon taking a continuum limit we find that our result in massless case agrees with the known exact result. In massive case, we find an agreement with mass perturbation theory in small mass regime and deviations in large mass regime. We estimate computational costs required to take a reasonable continuum limit. Our results imply that digital quantum simulation is already useful tool to explore non-perturbative aspects of gauge theories with real time and topological terms.
We perform digital quantum simulation to study screening and confinement in a gauge theory with a topological term, focusing on ($1+1$)-dimensional quantum electrodynamics (Schwinger model) with a theta term. We compute the ground state energy in the
We numerically study the single-flavor Schwinger model with a topological $theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especi
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term, a regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-weighted Tensor Renormalization Group met
We construct a tensor network representation of the partition function for the massless Schwinger model on a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a topological term. Using a particul
We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics. Relying on the rich quantum-simulation toolb