ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Accurate Text-based Image Captioning with Content Diversity Exploration

193   0   0.0 ( 0 )
 نشر من قبل Mingkui Tan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very challenging because an image often contains complex texts and visual information that is hard to be described comprehensively. Existing methods attempt to extend the traditional image captioning methods to solve this task, which focus on describing the overall scene of images by one global caption. This is infeasible because the complex text and visual information cannot be described well within one caption. To resolve this difficulty, we seek to generate multiple captions that accurately describe different parts of an image in detail. To achieve this purpose, there are three key challenges: 1) it is hard to decide which parts of the texts of images to copy or paraphrase; 2) it is non-trivial to capture the complex relationship between diverse texts in an image; 3) how to generate multiple captions with diverse content is still an open problem. To conquer these, we propose a novel Anchor-Captioner method. Specifically, we first find the important tokens which are supposed to be paid more attention to and consider them as anchors. Then, for each chosen anchor, we group its relevant texts to construct the corresponding anchor-centred graph (ACG). Last, based on different ACGs, we conduct multi-view caption generation to improve the content diversity of generated captions. Experimental results show that our method not only achieves SOTA performance but also generates diverse captions to describe images.



قيم البحث

اقرأ أيضاً

Generating accurate descriptions for online fashion items is important not only for enhancing customers shopping experiences, but also for the increase of online sales. Besides the need of correctly presenting the attributes of items, the expressions in an enchanting style could better attract customer interests. The goal of this work is to develop a novel learning framework for accurate and expressive fashion captioning. Different from popular work on image captioning, it is hard to identify and describe the rich attributes of fashion items. We seed the description of an item by first identifying its attributes, and introduce attribute-level semantic (ALS) reward and sentence-level semantic (SLS) reward as metrics to improve the quality of text descriptions. We further integrate the training of our model with maximum likelihood estimation (MLE), attribute embedding, and Reinforcement Learning (RL). To facilitate the learning, we build a new FAshion CAptioning Dataset (FACAD), which contains 993K images and 130K corresponding enchanting and diverse descriptions. Experiments on FACAD demonstrate the effectiveness of our model.
208 - Anwen Hu , Shizhe Chen , Qin Jin 2021
For an image with multiple scene texts, different people may be interested in different text information. Current text-aware image captioning models are not able to generate distinctive captions according to various information needs. To explore how to generate personalized text-aware captions, we define a new challenging task, namely Question-controlled Text-aware Image Captioning (Qc-TextCap). With questions as control signals, this task requires models to understand questions, find related scene texts and describe them together with objects fluently in human language. Based on two existing text-aware captioning datasets, we automatically construct two datasets, ControlTextCaps and ControlVizWiz to support the task. We propose a novel Geometry and Question Aware Model (GQAM). GQAM first applies a Geometry-informed Visual Encoder to fuse region-level object features and region-level scene text features with considering spatial relationships. Then, we design a Question-guided Encoder to select the most relevant visual features for each question. Finally, GQAM generates a personalized text-aware caption with a Multimodal Decoder. Our model achieves better captioning performance and question answering ability than carefully designed baselines on both two datasets. With questions as control signals, our model generates more informative and diverse captions than the state-of-the-art text-aware captioning model. Our code and datasets are publicly available at https://github.com/HAWLYQ/Qc-TextCap.
Understanding images without explicit supervision has become an important problem in computer vision. In this paper, we address image captioning by generating language descriptions of scenes without learning from annotated pairs of images and their c aptions. The core component of our approach is a shared latent space that is structured by visual concepts. In this space, the two modalities should be indistinguishable. A language model is first trained to encode sentences into semantically structured embeddings. Image features that are translated into this embedding space can be decoded into descriptions through the same language model, similarly to sentence embeddings. This translation is learned from weakly paired images and text using a loss robust to noisy assignments and a conditional adversarial component. Our approach allows to exploit large text corpora outside the annotated distributions of image/caption data. Our experiments show that the proposed domain alignment learns a semantically meaningful representation which outperforms previous work.
Recently, the state-of-the-art models for image captioning have overtaken human performance based on the most popular metrics, such as BLEU, METEOR, ROUGE, and CIDEr. Does this mean we have solved the task of image captioning? The above metrics only measure the similarity of the generated caption to the human annotations, which reflects its accuracy. However, an image contains many concepts and multiple levels of detail, and thus there is a variety of captions that express different concepts and details that might be interesting for different humans. Therefore only evaluating accuracy is not sufficient for measuring the performance of captioning models --- the diversity of the generated captions should also be considered. In this paper, we proposed a new metric for measuring the diversity of image captions, which is derived from latent semantic analysis and kernelized to use CIDEr similarity. We conduct extensive experiments to re-evaluate recent captioning models in the context of both diversity and accuracy. We find that there is still a large gap between the model and human performance in terms of both accuracy and diversity and the models that have optimized accuracy (CIDEr) have low diversity. We also show that balancing the cross-entropy loss and CIDEr reward in reinforcement learning during training can effectively control the tradeoff between diversity and accuracy of the generated captions.
55 - Tong He , Weilin Huang , Yu Qiao 2016
We introduce a new top-down pipeline for scene text detection. We propose a novel Cascaded Convolutional Text Network (CCTN) that joints two customized convolutional networks for coarse-to-fine text localization. The CCTN fast detects text regions ro ughly from a low-resolution image, and then accurately localizes text lines from each enlarged region. We cast previous character based detection into direct text region estimation, avoiding multiple bottom- up post-processing steps. It exhibits surprising robustness and discriminative power by considering whole text region as detection object which provides strong semantic information. We customize convolutional network by develop- ing rectangle convolutions and multiple in-network fusions. This enables it to handle multi-shape and multi-scale text efficiently. Furthermore, the CCTN is computationally efficient by sharing convolutional computations, and high-level property allows it to be invariant to various languages and multiple orientations. It achieves 0.84 and 0.86 F-measures on the ICDAR 2011 and ICDAR 2013, delivering substantial improvements over state-of-the-art results [23, 1].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا