ﻻ يوجد ملخص باللغة العربية
We constructed involutions for a Halphen pencil of index 2, and proved that the birational mapping corresponding to the autonomous reduction of the elliptic Painleve equation for the same pencil can be obtained as the composition of two such involutions.
We contribute to the algebraic-geometric study of discrete integrable systems generated by planar birational maps: (a) we find geometric description of Manin involutions for elliptic pencils consisting of curves of higher degree, birationally equiv
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements
Discrete and q-difference deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by a central system of discrete or q-difference equations which in particular cases represent discrete and q-differenc
KdV6 equation can be described as the Kupershmidt deformation of the KdV equation (see 2008, Phys. Lett. A 372: 263). In this paper, starting from the bi-Hamiltonian structure of the discrete integrable system, we propose a generalized Kupershmidt de
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on the square lattice. The fields are associated to the vertices and an equation Q(x_1,x_2,x_3,x_4)=0 relates four fields at one quad. Integrability of equations is und