ترغب بنشر مسار تعليمي؟ اضغط هنا

Aligning Subtitles in Sign Language Videos

116   0   0.0 ( 0 )
 نشر من قبل Triantafyllos Afouras
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this work is to temporally align asynchronous subtitles in sign language videos. In particular, we focus on sign-language interpreted TV broadcast data comprising (i) a video of continuous signing, and (ii) subtitles corresponding to the audio content. Previous work exploiting such weakly-aligned data only considered finding keyword-sign correspondences, whereas we aim to localise a complete subtitle text in continuous signing. We propose a Transformer architecture tailored for this task, which we train on manually annotated alignments covering over 15K subtitles that span 17.7 hours of video. We use BERT subtitle embeddings and CNN video representations learned for sign recognition to encode the two signals, which interact through a series of attention layers. Our model outputs frame-level predictions, i.e., for each video frame, whether it belongs to the queried subtitle or not. Through extensive evaluations, we show substantial improvements over existing alignment baselines that do not make use of subtitle text embeddings for learning. Our automatic alignment model opens up possibilities for advancing machine translation of sign languages via providing continuously synchronized video-text data.



قيم البحث

اقرأ أيضاً

The objective of this work is to annotate sign instances across a broad vocabulary in continuous sign language. We train a Transformer model to ingest a continuous signing stream and output a sequence of written tokens on a large-scale collection of signing footage with weakly-aligned subtitles. We show that through this training it acquires the ability to attend to a large vocabulary of sign instances in the input sequence, enabling their localisation. Our contributions are as follows: (1) we demonstrate the ability to leverage large quantities of continuous signing videos with weakly-aligned subtitles to localise signs in continuous sign language; (2) we employ the learned attention to automatically generate hundreds of thousands of annotations for a large sign vocabulary; (3) we collect a set of 37K manually verified sign instances across a vocabulary of 950 sign classes to support our study of sign language recognition; (4) by training on the newly annotated data from our method, we outperform the prior state of the art on the BSL-1K sign language recognition benchmark.
We present a self-supervised approach for learning video representations using temporal video alignment as a pretext task, while exploiting both frame-level and video-level information. We leverage a novel combination of temporal alignment loss and t emporal regularization terms, which can be used as supervision signals for training an encoder network. Specifically, the temporal alignment loss (i.e., Soft-DTW) aims for the minimum cost for temporally aligning videos in the embedding space. However, optimizing solely for this term leads to trivial solutions, particularly, one where all frames get mapped to a small cluster in the embedding space. To overcome this problem, we propose a temporal regularization term (i.e., Contrastive-IDM) which encourages different frames to be mapped to different points in the embedding space. Extensive evaluations on various tasks, including action phase classification, action phase progression, and fine-grained frame retrieval, on three datasets, namely Pouring, Penn Action, and IKEA ASM, show superior performance of our approach over state-of-the-art methods for self-supervised representation learning from videos. In addition, our method provides significant performance gain where labeled data is lacking.
Sign Language Recognition (SLR) is a challenging research area in computer vision. To tackle the annotation bottleneck in SLR, we formulate the problem of Zero-Shot Sign Language Recognition (ZS-SLR) and propose a two-stream model from two input moda lities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on four datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, and NTU-60, obtaining state-of-the-art results compared to state-of-the-art ZS-SLR models.
Sign language lexica are a useful resource for researchers and people learning sign languages. Current implementations allow a user to search a sign either by its gloss or by selecting its primary features such as handshape and location. This study f ocuses on exploring a reverse search functionality where a user can sign a query sign in front of a webcam and retrieve a set of matching signs. By extracting different body joints combinations (upper body, dominant hands arm and wrist) using the pose estimation framework OpenPose, we compare four techniques (PCA, UMAP, DTW and Euclidean distance) as distance metrics between 20 query signs, each performed by eight participants on a 1200 sign lexicon. The results show that UMAP and DTW can predict a matching sign with an 80% and 71% accuracy respectively at the top-20 retrieved signs using the movement of the dominant hand arm. Using DTW and adding more sign instances from other participants in the lexicon, the accuracy can be raised to 90% at the top-10 ranking. Our results suggest that our methodology can be used with no training in any sign language lexicon regardless of its size.
Fingerspelling, in which words are signed letter by letter, is an important component of American Sign Language. Most previous work on automatic fingerspelling recognition has assumed that the boundaries of fingerspelling regions in signing videos ar e known beforehand. In this paper, we consider the task of fingerspelling detection in raw, untrimmed sign language videos. This is an important step towards building real-world fingerspelling recognition systems. We propose a benchmark and a suite of evaluation metrics, some of which reflect the effect of detection on the downstream fingerspelling recognition task. In addition, we propose a new model that learns to detect fingerspelling via multi-task training, incorporating pose estimation and fingerspelling recognition (transcription) along with detection, and compare this model to several alternatives. The model outperforms all alternative approaches across all metrics, establishing a state of the art on the benchmark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا