ﻻ يوجد ملخص باللغة العربية
Multiple instance learning (MIL) is the preferred approach for whole slide image classification. However, most MIL approaches do not exploit the interdependencies of tiles extracted from a whole slide image, which could provide valuable cues for classification. This paper presents a novel MIL approach that exploits the spatial relationship of tiles for classifying whole slide images. To do so, a sparse map is built from tiles embeddings, and is then classified by a sparse-input CNN. It obtained state-of-the-art performance over popular MIL approaches on the classification of cancer subtype involving 10000 whole slide images. Our results suggest that the proposed approach might (i) improve the representation learning of instances and (ii) exploit the context of instance embeddings to enhance the classification performance. The code of this work is open-source at {github censored for review}.
The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging du
Weak supervision learning on classification labels has demonstrated high performance in various tasks. When a few pixel-level fine annotations are also affordable, it is natural to leverage both of the pixel-level (e.g., segmentation) and image level
Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationa
We propose a Deep learning-based weak label learning method for analysing whole slide images (WSIs) of Hematoxylin and Eosin (H&E) stained tumorcells not requiring pixel-level or tile-level annotations using Self-supervised pre-training and heterogen
Histopathology slides are routinely marked by pathologists using permanent ink markers that should not be removed as they form part of the medical record. Often tumour regions are marked up for the purpose of highlighting features or other downstream