ترغب بنشر مسار تعليمي؟ اضغط هنا

GraphFormers: GNN-nested Language Models for Linked Text Representation

96   0   0.0 ( 0 )
 نشر من قبل Junhan Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Linked text representation is critical for many intelligent web applications, such as online advertisement and recommender systems. Recent breakthroughs on pretrained language models and graph neural networks facilitate the development of corresponding techniques. However, the existing works mainly rely on cascaded model structures: the texts are independently encoded by language models at first, and the textual embeddings are further aggregated by graph neural networks. We argue that the neighbourhood information is insufficiently utilized within the above process, which restricts the representation quality. In this work, we propose GraphFormers, where graph neural networks are nested alongside each transformer layer of the language models. On top of the above architecture, the linked texts will iteratively extract neighbourhood information for the enhancement of their own semantics. Such an iterative workflow gives rise to more effective utilization of neighbourhood information, which contributes to the representation quality. We further introduce an adaptation called unidirectional GraphFormers, which is much more efficient and comparably effective; and we leverage a pretraining strategy called the neighbourhood-aware masked language modeling to enhance the training effect. We perform extensive experiment studies with three large-scale linked text datasets, whose results verify the effectiveness of our proposed methods.



قيم البحث

اقرأ أيضاً

Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts and getting rid of the noises is es sential to improve its performance. Traditional attentive models attend to all words without explicit constraint, which results in inaccurate concentration on some dispensable words. In this work, we propose using syntax to guide the text modeling by incorporating explicit syntactic constraints into attention mechanisms for better linguistically motivated word representations. In detail, for self-attention network (SAN) sponsored Transformer-based encoder, we introduce syntactic dependency of interest (SDOI) design into the SAN to form an SDOI-SAN with syntax-guided self-attention. Syntax-guided network (SG-Net) is then composed of this extra SDOI-SAN and the SAN from the original Transformer encoder through a dual contextual architecture for better linguistics inspired representation. The proposed SG-Net is applied to typical Transformer encoders. Extensive experiments on popular benchmark tasks, including machine reading comprehension, natural language inference, and neural machine translation show the effectiveness of the proposed SG-Net design.
Text generation has become one of the most important yet challenging tasks in natural language processing (NLP). The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained langua ge models (PLMs). In this paper, we present an overview of the major advances achieved in the topic of PLMs for text generation. As the preliminaries, we present the general task definition and briefly describe the mainstream architectures of PLMs for text generation. As the core content, we discuss how to adapt existing PLMs to model different input data and satisfy special properties in the generated text. We further summarize several important fine-tuning strategies for text generation. Finally, we present several future directions and conclude this paper. Our survey aims to provide text generation researchers a synthesis and pointer to related research.
Purely character-based language models (LMs) have been lagging in quality on large scale datasets, and current state-of-the-art LMs rely on word tokenization. It has been assumed that injecting the prior knowledge of a tokenizer into the model is ess ential to achieving competitive results. In this paper, we show that contrary to this conventional wisdom, tokenizer-free LMs with sufficient capacity can achieve competitive performance on a large scale dataset. We train a vanilla transformer network with 40 self-attention layers on the One Billion Word (lm1b) benchmark and achieve a new state of the art for tokenizer-free LMs, pushing these models to be on par with their word-based counterparts.
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and i nference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. Ablation studies and a qualitative analysis provide more insights into our approach.
Recently, text world games have been proposed to enable artificial agents to understand and reason about real-world scenarios. These text-based games are challenging for artificial agents, as it requires understanding and interaction using natural la nguage in a partially observable environment. In this paper, we improve the semantic understanding of the agent by proposing a simple RL with LM framework where we use transformer-based language models with Deep RL models. We perform a detailed study of our framework to demonstrate how our model outperforms all existing agents on the popular game, Zork1, to achieve a score of 44.7, which is 1.6 higher than the state-of-the-art model. Our proposed approach also performs comparably to the state-of-the-art models on the other set of text games.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا