ترغب بنشر مسار تعليمي؟ اضغط هنا

New structure on the quantum alcove model with applications to representation theory and Schubert calculus

74   0   0.0 ( 0 )
 نشر من قبل Takafumi Kouno
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum alcove model associated to a dominant weight plays an important role in many branches of mathematics, such as combinatorial representation theory, the theory of Macdonald polynomials, and Schubert calculus. For a dominant weight, it is proved by Lenart-Lubovsky that the quantum alcove model does not depend on the choice of a reduced alcove path, which is a shortest path of alcoves from the fundamental one to its translation by the given dominant weight. This is established through quantum Yang-Baxter moves, which biject the objects of the model associated with two such alcove paths, and can be viewed as a generalization of jeu de taquin slides to arbitrary root systems. The purpose of this paper is to give a generalization of quantum Yang-Baxter moves to the quantum alcove model corresponding to an arbitrary weight, which was used to express a general Chevalley formula in the equivariant $K$-group of semi-infinite flag manifolds. The generalized quantum Yang-Baxter moves give rise to a sijection (bijection between signed sets), and are shown to preserve certain important statistics, including weights and heights. As an application, we prove that the generating function of these statistics does not depend on the choice of a reduced alcove path. Also, we obtain an identity for the graded characters of Demazure submodules of level-zero extremal weight modules over a quantum affine algebra, which can be thought of as a representation-theoretic analogue of the mentioned Chevalley formula. Other applications and some open problems involving signed crystals are discussed.

قيم البحث

اقرأ أيضاً

We study plane partitions satisfying condition $a_{n+1,m+1}=0$ (this condition is called pit) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal $mathfrak{gl}_1$ algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra $mathfrak{gl}_{m|n}$. We discuss representation theoretic interpretation of our formulas using $q$-deformed $W$-algebra $mathfrak{gl}_{m|n}$.
We study the back stable $K$-theory Schubert calculus of the infinite flag variety. We define back stable (double) Grothendieck polynomials and double $K$-Stanley functions and establish coproduct expansion formulae. Applying work of Weigandt, we ext end our previous results on bumpless pipedreams from cohomology to $K$-theory. We study finiteness and positivity properties of the ring of back stable Grothendieck polynomials, and divided difference operators in $K$-homology.
The cohomology of the affine flag variety of a complex reductive group is a comodule over the cohomology of the affine Grassmannian. We give positive formulae for the coproduct of an affine Schubert class in terms of affine Stanley classes and finite Schubert classes, in (torus-equivariant) cohomology and K-theory. As an application, we deduce monomial positivity for the affine Schubert polynomials of the second author.
106 - Hideya Watanabe 2021
We provide a new tableau model from which one can easily deduce the characters of irreducible polynomial representations of the orthogonal group $mathrm{O}_n(mathbb{C})$. This model originates from representation theory of the $imath$quantum group of type AI, and is equipped with a combinatorial structure, which we call AI-crystal structure. This structure enables us to describe combinatorially the tensor product of an $mathrm{O}_n(mathbb{C})$-module and a $mathrm{GL}_n(mathbb{C})$-module, and the branching from $mathrm{GL}_n(mathbb{C})$ to $mathrm{O}_n(mathbb{C})$.
We study the back stable Schubert calculus of the infinite flag variety. Our main results are: 1) a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; 2) a novel definition of do uble and triple Stanley symmetric functions; 3) a proof of the positivity of double Edelman-Greene coefficients generalizing the results of Edelman-Greene and Lascoux-Schutzenberger; 4) the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman-Greene insertion algorithm; 5) the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; 6) equivariant Pieri rules for the homology of the infinite Grassmannian; 7) homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا