ﻻ يوجد ملخص باللغة العربية
We survey the landscape of binary hydrides across the entire periodic table from 10 to 500 GPa using a crystal structure prediction method. Building a critical temperature ($T_c$) model, with inputs arising from density of states calculations and Gaspari-Gyorffy theory, allows us to predict which energetically competitive candidates are most promising for high-$T_c$ superconductivity. Implementing optimisations, which lead to an order of magnitude speed-up for electron-phonon calculations, then allows us to perform an unprecedented number of high-throughput calculations of $T_c$ based on these predictions and to refine the model in an iterative manner. Converged electron-phonon calculations are performed for 121 of the best candidates from the final model. From these, we identify 36 above-100 K dynamically stable superconductors. To the best of our knowledge, superconductivity has not been previously studied in 27 of these. Of the 36, 18 exhibit superconductivity above 200 K, including structures of NaH$_6$ (248-279 K) and CaH$_6$ (216-253 K) at the relatively low pressure of 100 GPa.
Two hydrogen-rich materials, H$_3$S and LaH$_{10}$, synthesized at megabar pressures, have revolutionized the field of condensed matter physics providing the first glimpse to the solution of the hundred-year-old problem of room temperature supercondu
Stability of numerous unexpected actinium hydrides was predicted via evolutionary algorithm USPEX. Electron-phonon interaction was investigated for the hydrogen-richest and most symmetric phases: R$overline{3}$m-$AcH_{10}$, I4/mmm-$AcH_{12}$ and P$ov
The theory of symmetry indicators has enabled database searches for topological materials in normal conducting phases, which has led to several encyclopedic topological material databases. Here, based on recently developed symmetry indicators for sup
In conventional metals, electron-phonon coupling, or the phonon-mediated interaction between electrons, has long been known to be the pairing interaction responsible for the superconductivity. The strength of this interaction essentially determines t
Even though superconductivity has been studied intensively for more than a century, the vast majority of superconductivity research today is carried out in nearly the same manner as decades ago. That is, each study tends to focus on only a single mat