ترغب بنشر مسار تعليمي؟ اضغط هنا

High-throughput Investigations of Topological and Nodal Superconductors

101   0   0.0 ( 0 )
 نشر من قبل Seishiro Ono
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory of symmetry indicators has enabled database searches for topological materials in normal conducting phases, which has led to several encyclopedic topological material databases. Here, based on recently developed symmetry indicators for superconductors, we report our comprehensive search for topological and nodal superconductors among nonmagnetic materials in Inorganic Crystal Structure Database. A myriad of topological superconductors with exotic boundary states are discovered. When materials are symmetry-enforced nodal superconductors, positions and shapes of the nodes are also identified. These data are aggregated at Database of Topological and Nodal Supercoductors. We also provide a subroutine Topological Supercon, which allows users to examine the topological nature in the superconducting phase of any material themselves by uploading the result of first-principles calculations as an input. Our database and subroutine, when combined with experiments, will help us understand the unconventional pairing mechanism and facilitate realizations of the long-sought Majorana fermions promising for topological quantum computations.



قيم البحث

اقرأ أيضاً

Searching for topological insulators/superconductors is one central subject in recent condensed matter physics. As a theoretical aspect, various classification methods of symmetry-protected topological phases have been developed, where the topology o f a gapped Hamiltonian is investigated from the viewpoint of its onsite/crystal symmetry. On the other hand, topological physics also appears in semimetals, whose gapless points can be characterized by topological invariants. Stimulated by the backgrounds, we shed light on the topology of nodal superconductors. In this paper, we review our modern topological classification theory of superconducting gap nodes in terms of symmetry. The classification method elucidates nontrivial gap structures arising from nonsymmorphic symmetry or angular momentum, which cannot be predicted by a conventional theory.
We establish quasi-two-dimensional thin films of iron-based superconductors (FeSCs) as a new high-temperature platform for hosting intrinsic time-reversal-invariant helical topological superconductivity (TSC). Based on the combination of Dirac surfac e state and bulk extended $s$-wave pairing, our theory should be directly applicable to a large class of experimentally established FeSCs, opening a new TSC paradigm. In particular, an applied electric field serves as a topological switch for helical Majorana edge modes in FeSC thin films, allowing for an experimentally feasible design of gate-controlled helical Majorana circuits. Applying an in-plane magnetic field drives the helical TSC phase into a higher-order TSC carrying corner-localized Majorana zero modes. Our proposal should enable the experimental realization of helical Majorana fermions.
We fabricate van der Waals heterostructure devices using few unit cell thick Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ for magnetotransport measurements. The superconducting transition temperature and carrier density in atomically thin samples can be maintai ned to close to that of the bulk samples. As in the bulk sample, the sign of the Hall conductivity is found to be opposite to the normal state near the transition temperature but with a drastic enlargement of the region of Hall sign reversal in the temperature-magnetic field phase diagram as the thickness of samples decreases. Quantitative analysis of the Hall sign reversal based on the excess charge density in the vortex core and superconducting fluctuations suggests a renormalized superconducting gap in atomically thin samples at the 2-dimensional limit.
Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the con stituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe$_2$ that achieve a quality factor $Q > 10^5$. This value sets an upper bound that corresponds to a resistance of $leq 192 muOmega$ when considering the additional loss introduced by integrating NbSe$_2$ into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.
Motivated by the recent proposals for unconventional emergent physics in twisted bilayers of nodal superconductors, we study the peculiarities of the Josephson effect at the twisted interface between $d$-wave superconductors. We demonstrate that for clean interfaces with a twist angle $theta_0$ in the range $0^circ<theta_0<45^circ$ the critical current can exhibit nonmonotonic temperature dependence with a maximum at a nonzero temperature as well as a complex dependence on the twist angle at low temperatures. The former is shown to arise quite generically due to the contributions of the momenta around the gap nodes, which are negative for nonzero twist angles. It is demonstrated that these features reflect the geometry of the Fermi surface and are sensitive to the form of the momentum dependence of the tunneling at the twisted interface. Close to $theta_0=45^circ$ we find that the critical current does not vanish due to Cooper pair cotunneling, which leads to a transition to a time-reversal breaking topological superconducting $d+id$ phase. Weak interface roughness, quasiperiodicity, and inhomogeneity broaden the momentum dependence of the interlayer tunneling leading to a critical current $I_csim cos(2theta_0)$ with $cos(6theta_0)$ corrections. Furthermore, strong disorder at the interface is demonstrated to suppress the time-reversal breaking superconducting phase near $theta_0=45^circ$. Last, we provide a comprehensive theoretical analysis of experiments that can reveal the full current-phase relation for twisted superconductors close to $theta_0=45^circ$. In particular, we demonstrate the emergence of the Fraunhofer interference pattern near $theta_0=45^circ$, while accounting for realistic sample geometries, and show that its temperature dependence can yield unambiguous evidence of Cooper pair cotunneling, necessary for topological superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا