ﻻ يوجد ملخص باللغة العربية
A new formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using the projection operator method (Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This is an extension of the Green-Kubo-Nakano (GKN) formula to the case of non-Newtonian fluids, which is the essential factor to preserve the relativistic causality in relativistic dissipative hydrodynamics. This formula is the generalization of the GKN formula in the sense that it can reproduce the GKN formula in a certain limit. In this work, we extend the previous work so as to apply to more general situations.
Transport coefficients of causal dissipative relativistic fluid dynamics (CDR) are studied in quenched lattice simulations. CDR describes the behavior of relativistic non-Newtonian fluids in which the relaxation time appears as a new transport coeffi
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear
We studied the shock propagation and its stability with the causal dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence of the usual viscosity is not enough to stabilize the solution. This problem is solved by introducing a
We extended our formulation of causal dissipative hydrodynamics [T. Koide textit{et al.}, Phys. Rev. textbf{C75}, 034909 (2007)] to be applicable to the ultra-relativistic regime by considering the extensiveness of irreversible currents. The new equa
We compute the shear and bulk viscosities, as well as the thermal conductivity of an ultrarelativistic fluid obeying the relativistic Boltzmann equation in 2+1 space-time dimensions. The relativistic Boltzmann equation is taken in the single relaxati