ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport Coefficients of Non-Newtonian Fluid and Causal Dissipative Hydrodynamics

557   0   0.0 ( 0 )
 نشر من قبل Tomoi Koide
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using the projection operator method (Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This is an extension of the Green-Kubo-Nakano (GKN) formula to the case of non-Newtonian fluids, which is the essential factor to preserve the relativistic causality in relativistic dissipative hydrodynamics. This formula is the generalization of the GKN formula in the sense that it can reproduce the GKN formula in a certain limit. In this work, we extend the previous work so as to apply to more general situations.



قيم البحث

اقرأ أيضاً

Transport coefficients of causal dissipative relativistic fluid dynamics (CDR) are studied in quenched lattice simulations. CDR describes the behavior of relativistic non-Newtonian fluids in which the relaxation time appears as a new transport coeffi cient besides the shear and bulk viscosities. It was recently shown that these coefficients can be given by the temporal-correlation functions of the energy-momentum tensors as in the case of the Green-Kubo-Nakano formula. By using the new formula in CDR, we study the transport coefficients with lattice simulations in pure SU(3) gauge theory. After defining the energy-momentum tensor on the lattice, we extract a ratio of the shear viscosity to the relaxation time which is given only in terms of the static correlation functions. The simulations are performed on $24^3 times 4$--16 lattices with $beta_{_{rm LAT}} = 6.0$, which corresponds to the temperature range of $0.5 simle T/T_c simle 1.8$, where $T_c$ is the critical temperature.
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear and nonlinear response on top of equilibrium and non-equilibrium states. We consider the problems from the complementary perspectives of the general hydrodynamic theory of many-body systems, including hydrodynamic projections, and form-factor expansions in integrable models, and show how they provide a comprehensive and consistent set of exact methods to extract large scale behaviours. Finally, we overview various applications in integrable spin chains and field theories.
341 - G.S.Denicol , T. Kodama , T. Koide 2008
We studied the shock propagation and its stability with the causal dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence of the usual viscosity is not enough to stabilize the solution. This problem is solved by introducing a n additional viscosity which is related to the coarse-graining scale of the theory.
We extended our formulation of causal dissipative hydrodynamics [T. Koide textit{et al.}, Phys. Rev. textbf{C75}, 034909 (2007)] to be applicable to the ultra-relativistic regime by considering the extensiveness of irreversible currents. The new equa tion has a non-linear term which suppresses the effect of viscosity. We found that such a term is necessary to guarantee the positive definiteness of the inertia term and stabilize numerical calculations in ultra-relativistic initial conditions. Because of the suppression of the viscosity, the behavior of the fluid is more close to that of the ideal fluid. Our result is essentially same as that from the extended irreversible thermodynamics, but is different from the Israel-Stewart theory. A possible origin of the difference is discussed.
165 - M. Mendoza , I. Karlin , S. Succi 2013
We compute the shear and bulk viscosities, as well as the thermal conductivity of an ultrarelativistic fluid obeying the relativistic Boltzmann equation in 2+1 space-time dimensions. The relativistic Boltzmann equation is taken in the single relaxati on time approximation, based on two approaches, the first, due to Marle and using the Eckart decomposition, and the second, proposed by Anderson and Witting and using the Landau-Lifshitz decomposition. In both cases, the local equilibrium is given by a Maxwell-Juettner distribution. It is shown that, apart from slightly different numerical prefactors, the two models lead to a different dependence of the transport coefficients on the fluid temperature, quadratic and linear, for the case of Marle and Anderson-Witting, respectively. However, by modifying the Marle model according to the prescriptions given in Ref.[1], it is found that the temperature dependence becomes the same as for the Anderson-Witting model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا