ترغب بنشر مسار تعليمي؟ اضغط هنا

Using graphene conductors to enhance the functionality of atom-chips

103   0   0.0 ( 0 )
 نشر من قبل Mark Fromhold
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the performance and functionality of atom-chips can be transformed by using graphene-based van der Waals heterostructures to overcome present limitations on the lifetime of the trapped atom cloud and on its proximity to the chip surface. Our analysis involves Green-function calculations of the thermal (Johnson) noise and Casimir-Polder atom-surface attraction produced by the atom-chip. This enables us to determine the lifetime limitations produced by spin-flip, tunneling and three-body collisional losses. Compared with atom-chips that use thick metallic conductors and substrates, atom-chip structures based on two-dimensional materials reduce the minimum attainable atom-surface separation to a few 100 nm and increase the lifetimes of the trapped atom clouds by orders of magnitude so that they are limited only by the quality of the background vacuum. We predict that atom-chips with two-dimensional conductors will also reduce spatial fluctuations in the trapping potential originating from imperfections in the conductor patterns. These advantages will enhance the performance of atom-chips for quantum sensing applications and for fundamental studies of complex quantum systems.

قيم البحث

اقرأ أيضاً

Adiabatic techniques offer some of the most promising tools to achieve high-fidelity control of the centre-of-mass degree of freedom of single atoms. As their main requirement is to follow an eigenstate of the system, constraints on timing and field strength stability are usually low, especially for trapped systems. In this paper we present a detailed example of a technique to adiabatically transport a single atom between different waveguides on an atom chip. To ensure that all conditions are fulfilled, we carry out fully three dimensional simulations of the system, using experimentally realistic parameters. We also detail our method for simulating the system in very reasonable timescales on a consumer desktop machine by leveraging the power of GPU computing.
Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely refle cted from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions.
Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.
We present a non-destructive method to probe a complex quantum system using multiple impurity atoms as quantum probes. Our protocol provides access to different equilibrium properties of the system by changing its coupling to the probes. In particula r, we show that measurements with two probes reveal the systems non-local two-point density correlations, for probe-system contact interactions. We illustrate our findings with analytic and numerical calculations for the Bose-Hubbard model in the weakly and strongly-interacting regimes, under conditions relevant to ongoing experiments in cold atom systems.
Adiabatic techniques are well known tools in multi-level electron systems to transfer population between different states with high fidelity. Recently it has been realised that these ideas can also be used in ultra-cold atom systems to achieve cohere nt manipulation of the atomic centre-of-mass states. Here we present an investigation into a realistic setup using three atomic waveguides created on top of an atom chip and show that such systems hold large potential for the observation of adiabatic phenomena in experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا