ﻻ يوجد ملخص باللغة العربية
Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions.
An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to $^{85}text{Rb}$,
We demonstrate that a dispersive imaging technique based on the Faraday effect can measure the atom number in a large, ultracold atom cloud with a precision below the atom shot noise level. The minimally destructive character of the technique allows
We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of expe
Adiabatic techniques offer some of the most promising tools to achieve high-fidelity control of the centre-of-mass degree of freedom of single atoms. As their main requirement is to follow an eigenstate of the system, constraints on timing and field
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and