ﻻ يوجد ملخص باللغة العربية
We present transport measurements of bilayer graphene with 1.38{deg} interlayer twist and apparent additional alignment to its hexagonal boron nitride cladding. As with other devices with twist angles substantially larger than the magic angle of 1.1{deg}, we do not observe correlated insulating states or band reorganization. However, we do observe several highly unusual behaviors in magnetotransport. For a large range of densities around half filling of the moire bands, magnetoresistance is large and quadratic. Over these same densities, the magnetoresistance minima corresponding to gaps between Landau levels split and bend as a function of density and field. We reproduce the same splitting and bending behavior in a simple tight-binding model of Hofstadters butterfly on a square lattice with anisotropic hopping terms. These features appear to be a generic class of experimental manifestations of Hofstadters butterfly and may provide insight into the emergent states of twisted bilayer graphene.
Twisted van der Waals (vdW) heterostructures have recently emerged as an attractive platform to study tunable correlated electron systems. However, the quantum mechanical nature of vdW heterostructures makes their theoretical and experimental explora
Flatbands with extremely narrow bandwidths on the order of a few mili-electron volts can appear in twisted multilayer graphene systems for appropriate system parameters. Here we investigate the electronic structure of a twisted bi-bilayer graphene, o
The effects of the long range electrostatic interaction in twisted bilayer graphene are described using the Hartree-Fock approximation. The results show a significant dependence of the band widths and shapes on electron filling, and the existence of
We numerically investigate the electronic transport properties between two mesoscopic graphene disks with a twist by employing the density functional theory coupled with non-equilibrium Greens function technique. By attaching two graphene leads to up
We show that the recently observed superconductivity in twisted bilayer graphene (TBG) can be explained as a consequence of the Kohn-Luttinger (KL) instability which leads to an effective attraction between electrons with originally repulsive interac