ﻻ يوجد ملخص باللغة العربية
The global network of gravitational-wave detectors has completed three observing runs with $sim 50$ detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Multiple detectors operating at different parts of the globe will provide several pairs of interferometers with longer baselines and an increased network SNR. This will improve the sky localisation of GW events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO Global Network (LGN) in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics.
The LIGO Open Science Center (LOSC) fulfills LIGOs commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use
(abridged for arXiv) With the first direct detection of gravitational waves, the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) has initiated a new field of astronomy by providing an alternate means of sensing the universe. The e
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009 - Oct
In 2009-2010, the Laser Interferometer Gravitational-wave Observa- tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors
Einstein Telescope (ET) is a possible third generation ground-based gravitational wave observatory for which a design study is currently being carried out. A brief (and non-exhaustive) overview is given of ETs projected capabilities regarding astroph