ﻻ يوجد ملخص باللغة العربية
(abridged for arXiv) With the first direct detection of gravitational waves, the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) has initiated a new field of astronomy by providing an alternate means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual classifier. The resulting classification and characterization should help LIGO scientists to identify causes of glitches and subsequently eliminate them from the data or the detector entirely, thereby improving the rate and accuracy of gravitational-wave observations. We demonstrate these methods using a small subset of data from LIGOs first observing run.
The observation of gravitational waves is hindered by the presence of transient noise (glitches). We study data from the third observing run of the Advanced LIGO detectors, and identify new glitch classes. Using training sets assembled by monitoring
The LIGO Open Science Center (LOSC) fulfills LIGOs commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use
We present a novel Machine Learning (ML) based strategy to search for compact binary coalescences (CBCs) in data from ground-based gravitational wave (GW) observatories. This is the first ML-based search that not only recovers all the binary black ho
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativist
Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (sc