ﻻ يوجد ملخص باللغة العربية
The chemical composition of the Sun is a fundamental yardstick in astronomy, relative to which essentially all cosmic objects are referenced. We reassess the solar abundances of all 83 long-lived elements, using highly realistic solar modelling and state-of-the-art spectroscopic analysis techniques coupled with the best available atomic data and observations. Our new improved analysis confirms the relatively low solar abundances of C, N, and O obtained in our previous 3D-based studies: $logepsilon_{text{C}}=8.46pm0.04$, $logepsilon_{text{N}}=7.83pm0.07$, and $logepsilon_{text{O}}=8.69pm0.04$. The revised solar abundances for the other elements also typically agree well with our previously recommended values with just Li, F, Ne, Mg, Cl, Kr, Rb, Rh, Ba, W, Ir, and Pb differing by more than $0.05$ dex. The here advocated present-day photospheric metal mass fraction is only slightly higher than our previous value, mainly due to the revised Ne abundance from Genesis solar wind measurements: $X_{rm surface}=0.7438pm0.0054$, $Y_{rm surface}=0.2423pm 0.0054$, $Z_{rm surface}=0.0139pm 0.0006$, and $Z_{rm surface}/X_{rm surface}=0.0187pm 0.0009$. Overall the solar abundances agree well with those of CI chondritic meteorites but we identify a correlation with condensation temperature such that moderately volatile elements are enhanced by $approx 0.04$ dex in the CI chondrites and refractory elements possibly depleted by $approx 0.02$ dex, conflicting with conventional wisdom of the past half-century. Instead the solar chemical composition resembles more closely that of the fine-grained matrix of CM chondrites. The so-called solar modelling problem remains intact with our revised solar abundances, suggesting shortcomings with the computed opacities and/or treatment of mixing below the convection zone in existing standard solar models.
We present a summary of the splinter session Sun-like stars unlike the Sun that was held on 09 June 2016 as part of the Cool Stars 19 conference (Uppsala, Sweden). We discussed the main limitations (in the theory and observations) in the derivation o
Stellar members of binary systems are formed from the same material, therefore they should be chemically identical. However, recent high-precision studies have unveiled chemical differences between the two members of binary pairs composed by Sun-like
How the solar electromagnetic energy entering the Earths atmosphere varied since pre-industrial times is an important consideration in the climate change debate. Detrimental to this debate, estimates of the change in total solar irradiance (TSI) sinc
The X-ray and extreme-ultraviolet (EUV) emissions from the low-mass stars significantly affect the evolution of the planetary atmosphere. However, it is, observationally difficult to constrain the stellar high-energy emission because of the strong in
We benchmark new atomic data against a selection of irradiances obtained from medium-resolution quiet Sun spectra in the EUV, from 60 to 1040 AA. We use as a baseline the irradiances measured during solar minimum on 2008 April 14 by the prototype (PE