ﻻ يوجد ملخص باللغة العربية
GRB200522A is a short duration gamma-ray burst (GRB) at redshift $z$=0.554 characterized by a bright infrared counterpart. A possible, although not unambiguous, interpretation of the observed emission is the onset of a luminous kilonova powered by a rapidly rotating and highly-magnetized neutron star, known as magnetar. A bright radio flare, arising from the interaction of the kilonova ejecta with the surrounding medium, is a prediction of this model. Whereas the available dataset remains open to multiple interpretations (e.g. afterglow, r-process kilonova, magnetar-powered kilonova), long-term radio monitoring of this burst may be key to discriminate between models. We present our late-time upper limit on the radio emission of GRB200522A, carried out with the Karl G. Jansky Very Large Array at 288 days after the burst. For kilonova ejecta with energy $E_{rm ej} approx 10^{53} rm erg$, as expected for a long-lived magnetar remnant, we can already rule out ejecta masses $M_{rm ej} lesssim0.03 mathrm{M}_odot$ for the most likely range of circumburst densities $ngtrsim 10^{-3}$ cm$^{-3}$. Observations on timescales of $approx$3-10 yr after the merger will probe larger ejecta masses up to $M_{rm ej} sim 0.1 mathrm{M}_odot$, providing a robust test to the magnetar scenario.
We present a search for late-time rebrightening of radio emission from three supernovae (SNe) with associated gamma-ray bursts (GRBs). It has been previously proposed that the unusually energetic SNe associated with GRBs should enter the Sedov-Taylor
Massive, rapidly-spinning magnetar remnants produced as a result of binary neutron star (BNS) mergers may deposit a fraction of their energy into the surrounding kilonova ejecta, powering a synchrotron radio signal from the interaction of the ejecta
We examine a sample of 21 gamma-ray burst (GRB) afterglow light curves at radio frequencies, and compare them to the X-ray and/or optical properties of the afterglows and to the predictions of the standard jet/fireball model. Our sample includes ever
The study of stripped-envelope core-collapse supernovae (SNe), with evidence for strong interaction of SN ejecta with the circumstellar medium (CSM), provides insights into the pre-supernova progenitor, and a fast-forwarded view of the progenitor mas
There is growing evidence that a clear distinction between magnetars and radio pulsars may not exist, implying the population of neutron stars that exhibit both radio pulsations and bursting activities could be potentially large. In this situation, n