ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure

113   0   0.0 ( 0 )
 نشر من قبل Jae-Pil So
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum confinement in atomically-thin TMDCs enables the realization of deterministic single-photon emitters. The position and polarization control of single photons have been achieved via local strain engineering using nanostructures. However, most existing TMDC-based emitters are operated by optical pumping, while the emission sites in electrically pumped emitters are uncontrolled. Here, we demonstrate electrically driven single-photon emitters located at the positions where strains are induced by atomic-force-microscope indentation on a van der Waals heterostructure consisting of graphene, hexagonal-boron nitride, and tungsten diselenide. The optical, electrical, and mechanical properties induced by the local strain gradient were systematically analyzed. In particular, single-photon emission was observed at the indentation sites at 4 K. The emission exhibits photon anti-bunching behavior with a g(2)(0) value of ~0.3, intensity saturation and a linearly cross-polarized doublet. This robust spatial control of electrically driven single-photon emitters will pave the way for the practical implementation of integrated quantum light sources.



قيم البحث

اقرأ أيضاً

The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradic tory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.
Two dimensional layered van der Waals (vdW) magnets have demonstrated their potential to study both fundamental and applied physics due to their remarkable electronic properties. However, the connection of vdW magnets to spintronics as well as quantu m information science is not clear. In particular, it remains elusive whether there are novel magnetic phenomena only belonging to vdW magnets, but absent in the widely studied crystalline magnets. Here we consider the quantum correlations of magnons in a layered vdW magnet and identify an entanglement channel of magnons across the magnetic layers, which can be effectively tuned and even deterministically switched on and off by both magnetic and electric means. This is a unique feature of vdW magnets in which the underlying physics is well understood in terms of the competing roles of exchange and anisotropy fields that contribute to the magnon excitation. Furthermore, we show that such a tunable entanglement channel can mediate the electrically controllable entanglement of two distant qubits, which also provides a protocol to indirectly measure the entanglement of magnons. Our findings provide a novel avenue to electrically manipulate the qubits and further open up new opportunities to utilize vdW magnets for quantum information science.
The fabrication of van der Waals heterostructures, artificial materials assembled by individually stacking atomically thin (2D) materials, is one of the most promising directions in 2D materials research. Until now, the most widespread approach to st ack 2D layers relies on deterministic placement methods which are cumbersome when fabricating multilayered stacks. Moreover, they tend to suffer from poor control over the lattice orientations and the presence of unwanted adsorbates between the stacked layers. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the materials electronic properties and crystal structure, and explore applications for near-infrared photodetectors (exploiting its narrow bandgap) and for p-n junctions based on the stacking of MoS2 (n-doped) and franckeite (p-doped)
Heavy fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behavior ranging from quantum criticality and non-Fermi liquid behavior to unconventional topolog ical superconductivity. Heavy fermions arise from the exchange interaction between localized magnetic moments and conduction electrons that leads to the well-known Kondo effect. In a Kondo lattice, the interaction between the localized moments gives rise to a band with heavy effective mass. This intriguing phenomenology has so far only been realized in compounds containing rare-earth elements with 4f or 5f electrons. Here, we realize a designer van der Waals heterostructure where artificial heavy fermions emerge from the Kondo coupling between a lattice of localized magnetic moments and itinerant electrons in a 1T/1H-TaS$_2$ heterostructure. We study the heterostructure using scanning tunneling microscopy (STM) and spectroscopy (STS) and show that depending on the stacking order of the monolayers, we can either reveal the localized magnetic moments and the associated Kondo effect, or the conduction electrons with a heavy-fermion hybridization gap. Our experiments realize an ultimately tuneable platform for future experiments probing enhanced many-body correlations, dimensional tuning of quantum criticality, and unconventional superconductivity in two-dimensional artificial heavy-fermion systems.
When two superconductors are connected across a ferromagnet, the spin configuration of the transferred Cooper pairs can be modulated due to magnetic exchange interaction. The resulting supercurrent can reverse its sign across the Josephson junction ( JJ) [1-4]. Here we demonstrate Josephson phase modulation in van der Waals heterostructures when Cooper pairs from superconducting NbSe$_2$ tunnel through atomically thin magnetic insulator (MI) Cr$_2$Ge$_2$Te$_6$. Employing a superconducting quantum interference device based on MI JJs, we probe a doubly degenerate non-trivial JJ phase ($phi$) originating from the magnetic barrier. This $phi$-phase JJ is formed by momentum conserving tunneling of Ising Cooper pairs [5] across magnetic domains in the Cr$_2$Ge$_2$Te$_6$ barrier. The doubly degenerate ground states in MI JJs provide a two-level quantum system that can be utilized as a new disipationless component for superconducting quantum devices, including phase batteries [6], memories [7,8], and quantum Ratchets [9,10].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا