ﻻ يوجد ملخص باللغة العربية
We show that the (3+1)-dimensional gauged non-linear sigma model minimally coupled to a U(1) gauge field possesses analytic solutions representing gauged solitons at finite Baryon density whose electromagnetic field is a Force Free Plasma. These gauged solitons manifest a crystalline structure and generate in a very natural way persistent currents able to support Force Free Plasma electromagnetic fields. The trajectories of charged test particles moving within these configurations can be characterized. Quite surprisingly, despite the non-integrable nature of the theory, some of the perturbations of these gauged solitons allow to identify a proper resurgent parameter. In particular, the perturbations of the solitons profile are related to the Lame operator. On the other hand, the electromagnetic perturbations on the configurations satisfy a two-dimensional effective Schrodinger equation, where the soliton background interacts with the electromagnetic perturbations through an effective two-dimensional periodic potential. We studied numerically the band energy spectrum for different values of the free parameters of the theory and we found that bands-gaps are modulated by the potential strength. Finally we compare our crystal solutions with those of the (1+1)- dimesional Gross-Neveu model.
We show that one can reduce the coupled system of seven field equations of the (3+1)-dimensional gauged Skyrme model to the Heun equation (which, for suitable choices of the parameters, can be further reduced to the Whittaker-Hill equation) in two no
Necessary conditions for a soliton on a torus $M=R^m/Lambda$ to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be $L^2$ orthogonal to $ee$, t
In this paper, we construct the first analytic examples of (3+1)-dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-l
We show how the renormalons emerge from the renormalization group equation with a priori no reference to any Feynman diagrams. The proof is rather given by recasting the renormalization group equation as a resurgent equation studied in the mathematic
We derive a general quantum field theoretic formula for the force acting on expanding bubbles of a first order phase transition in the early Universe setting. In the thermodynamic limit the force is proportional to the entropy increase across the bub