ﻻ يوجد ملخص باللغة العربية
We present results from a resolved stellar population search for dwarf satellite galaxies of six nearby (D $<5$ Mpc), sub-Milky-Way mass hosts using deep ($msim27$ mag) optical imaging from the Large Binocular Telescope. We perform image simulations to quantify our detection efficiency for dwarfs over a large range in luminosity and size, and develop a fast catalog-based emulator that includes a treatment of unresolved photometric blending. We discover no new dwarf satellites, but we recover two previously known dwarfs (DDO 113 and LV J1228+4358) with $M_{text{V}}<-12$ that lie in our survey volume. We preview a new theoretical framework to predict satellite luminosity functions using analytic probability distribution functions and apply it to our sample, finding that we predict one fewer classical dwarf and one more faint dwarf ($M_{text{V}}sim-7.5$) than we find in our observational sample (i.e., the observational sample is slightly top-heavy). However, the overall number of dwarfs in the observational sample (2) is in good agreement with the theoretical expectations. Interestingly, DDO 113 shows signs of environmental quenching and LV J1228+4358 is tidally disrupting, suggesting that low-mass hosts may affect their satellites more severely than previously believed.
We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky Way-mass, star-forming galaxies in the
We analyse distribution, kinematics and star-formation (SF) properties of satellite galaxies in three different samples of nearby groups. We find that studied groups are generally well approximated by low-concentration NFW model, show a variety of LO
Using archival data from the HI Parkes All Sky Survey (HIPASS) we have searched for 21 cm line absorption in 204 nearby radio and star-forming galaxies with continuum flux densities greater than $S_{1.4} approx 250$ mJy within the redshift range $0 <
Observations of molecular gas in high-z star-forming galaxies typically rely on emission from CO lines arising from states with rotational quantum numbers J > 1. Converting these observations to an estimate of the CO J=1-0 intensity, and thus inferri
With a goal toward deriving the physical conditions in external galaxies, we present a study of the ammonia (NH$_3$) emission and absorption in a sample of star forming systems. Using the unique sensitivities to kinetic temperature afforded by the ex