ترغب بنشر مسار تعليمي؟ اضغط هنا

The LBT Satellites of Nearby Galaxies Survey (LBT-SONG): The Satellite Population of NGC 628

135   0   0.0 ( 0 )
 نشر من قبل Alexandra Davis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky Way-mass, star-forming galaxies in the Local Volume. In this paper, we describe our unresolved diffuse satellite finding and completeness measurement methodology and apply this framework to NGC 628, an isolated galaxy with $sim1/4$ the stellar mass of the Milky Way. We present two new dwarf satellite galaxy candidates: NGC 628 dwA, and dwB with $text{M}_{text{V}}$ = $-12.2$ and $-7.7$, respectively. NGC 628 dwA is a classical dwarf while NGC 628 dwB is a low-luminosity galaxy that appears to have been quenched after reionization. Completeness corrections indicate that the presence of these two satellites is consistent with CDM predictions. The satellite colors indicate that the galaxies are neither actively star-forming nor do they have the purely ancient stellar populations characteristic of ultrafaint dwarfs. Instead, and consistent with our previous work on the NGC 4214 system, they show signs of recent quenching, further indicating that environmental quenching can play a role in modifying satellite populations even for hosts smaller than the Milky Way.

قيم البحث

اقرأ أيضاً

We present results from a resolved stellar population search for dwarf satellite galaxies of six nearby (D $<5$ Mpc), sub-Milky-Way mass hosts using deep ($msim27$ mag) optical imaging from the Large Binocular Telescope. We perform image simulations to quantify our detection efficiency for dwarfs over a large range in luminosity and size, and develop a fast catalog-based emulator that includes a treatment of unresolved photometric blending. We discover no new dwarf satellites, but we recover two previously known dwarfs (DDO 113 and LV J1228+4358) with $M_{text{V}}<-12$ that lie in our survey volume. We preview a new theoretical framework to predict satellite luminosity functions using analytic probability distribution functions and apply it to our sample, finding that we predict one fewer classical dwarf and one more faint dwarf ($M_{text{V}}sim-7.5$) than we find in our observational sample (i.e., the observational sample is slightly top-heavy). However, the overall number of dwarfs in the observational sample (2) is in good agreement with the theoretical expectations. Interestingly, DDO 113 shows signs of environmental quenching and LV J1228+4358 is tidally disrupting, suggesting that low-mass hosts may affect their satellites more severely than previously believed.
We measure the radial profile of the 12CO(1-0) to H_2 conversion factor (Xco) in NGC 628. The Halpha emission from the VENGA integral field spectroscopy is used to map the star formation rate surface density (Sigma_{SFR}). We estimate the molecular g as surface density (Sigma_{H2}) from Sigma_{SFR} by inverting the molecular star formation law (SFL), and compare it to the CO intensity to measure Xco. We study the impact of systematic uncertainties by changing the slope of the SFL, using different SFR tracers (Halpha vs. far-UV plus 24mu m), and CO maps from different telescopes (single-dish and interferometers). The observed Xco profile is robust against these systematics, drops by a factor of 2 from R~7 kpc to the center of the galaxy, and is well fit by a gradient Delta log(Xco)=0.06pm0.02 dex kpc^-1. We study how changes in Xco follow changes in metallicity, gas density, and ionization parameter. Theoretical models show that the gradient in Xco can be explained by a combination of decreasing metallicity, and decreasing Sigma_{H2} with radius. Photoelectric heating from the local UV radiation field appears to contribute to the decrease of Xco in higher density regions. Our results show that galactic environment plays an important role at setting the physical conditions in star forming regions, in particular the chemistry of carbon in molecular complexes, and the radiative transfer of CO emission. We caution against adopting a single Xco value when large changes in gas surface density or metallicity are present.
128 - F. Annibali 2018
We present intermediate-resolution (R$sim$1000) spectra in the $sim$3500-10,000 A range of 14 globular clusters in the magellanic irregular galaxy NGC 4449 acquired with the Multi Object Double Spectrograph on the Large Binocular Telescope. We derive d Lick indices in the optical and the CaII-triplet index in the near-infrared in order to infer the clusters stellar population properties. The inferred cluster ages are typically older than $sim$9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range $-1.2lesssim$[Fe/H]$lesssim-0.7$, and typically sub-solar [$alpha/Fe$] ratios, with a peak at $sim-0.4$. These properties suggest that i) during the first few Gyrs NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the $alpha$-elements, and ii) globular clusters in NGC 4449 formed relatively late, from a medium already enriched in the products of type Ia supernovae. The majority of clusters appear also under-abundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second-generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M($<$2.88 kpc)=$3.15^{+3.16}_{-0.75} times 10^9~M_odot$. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.
93 - F. Sakhibov , A. S. Gusev , 2021
Star formation induced by a spiral shock wave, which in turn is generated by a spiral density wave, produces an azimuthal age gradient across the spiral arm, which has opposite signs on either side of the corotational resonance. An analysis of the sp atial separation between young star clusters and nearby HII regions made it possible to determine the position of the corotation radius in the studied galaxies. Fourier analysis of the gas velocity field in the same galaxies independently confirmed the corotation radius estimates obtained by the morphological method presented here.
81 - M. Perna , M. Curti , G. Cresci 2018
Gravitationally lensed systems allow a detailed view of galaxies at high redshift. High spatial- and spectral-resolution measurements of arc-like structures can offer unique constraints on the physical and dynamical properties of high-z systems. We p resent near-infrared spectra centred on the gravitational arcs of six known z ~ 2 lensed star-forming galaxies of stellar masses of 10^9-10^11 Msun and star formation rate (SFR) in the range between 10 and 400 Msun/yr. Ground layer adaptive optics (AO)-assisted observations are obtained at the Large Binocular Telescope (LBT) with the LUCI spectrographs during the commissioning of the ARGOS facility. We used MOS masks with curved slits to follow the extended arched structures and study the diagnostic emission lines. Combining spatially resolved kinematic properties across the arc-like morphologies, emission line diagnostics and archival information, we distinguish between merging and rotationally supported systems, and reveal the possible presence of ejected gas. For galaxies that have evidence for outflows, we derive outflow energetics and mass-loading factors compatible with those observed for stellar winds in local and high-z galaxies. We also use flux ratio diagnostics to derive gas-phase metallicities. The low signal-to-noise ratio in the faint H$beta$ and nitrogen lines allows us to derive an upper limit of ~ 0.15 dex for the spatial variations in metallicity along the slit for the lensed galaxy J1038. Analysed near-infrared spectra presented here represent the first scientific demonstration of performing AO-assisted multi-object spectroscopy with narrow curved-shape slits. The increased angular and spectral resolution, combined with the binocular operation mode with the 8.4-m-wide eyes of LBT, will allow the characterisation of kinematic and chemical properties of a large sample of galaxies at high-z in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا