ترغب بنشر مسار تعليمي؟ اضغط هنا

Curious Representation Learning for Embodied Intelligence

167   0   0.0 ( 0 )
 نشر من قبل Chuang Gan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-supervised representation learning has achieved remarkable success in recent years. By subverting the need for supervised labels, such approaches are able to utilize the numerous unlabeled images that exist on the Internet and in photographic datasets. Yet to build truly intelligent agents, we must construct representation learning algorithms that can learn not only from datasets but also learn from environments. An agent in a natural environment will not typically be fed curated data. Instead, it must explore its environment to acquire the data it will learn from. We propose a framework, curious representation learning (CRL), which jointly learns a reinforcement learning policy and a visual representation model. The policy is trained to maximize the error of the representation learner, and in doing so is incentivized to explore its environment. At the same time, the learned representation becomes stronger and stronger as the policy feeds it ever harder data to learn from. Our learned representations enable promising transfer to downstream navigation tasks, performing better than or comparably to ImageNet pretraining without using any supervision at all. In addition, despite being trained in simulation, our learned representations can obtain interpretable results on real images. Code is available at https://yilundu.github.io/crl/.



قيم البحث

اقرأ أيضاً

Passive visual systems typically fail to recognize objects in the amodal setting where they are heavily occluded. In contrast, humans and other embodied agents have the ability to move in the environment, and actively control the viewing angle to bet ter understand object shapes and semantics. In this work, we introduce the task of Embodied Visual Recognition (EVR): An agent is instantiated in a 3D environment close to an occluded target object, and is free to move in the environment to perform object classification, amodal object localization, and amodal object segmentation. To address this, we develop a new model called Embodied Mask R-CNN, for agents to learn to move strategically to improve their visual recognition abilities. We conduct experiments using the House3D environment. Experimental results show that: 1) agents with embodiment (movement) achieve better visual recognition performance than passive ones; 2) in order to improve visual recognition abilities, agents can learn strategical moving paths that are different from shortest paths.
The domain of Embodied AI, in which agents learn to complete tasks through interaction with their environment from egocentric observations, has experienced substantial growth with the advent of deep reinforcement learning and increased interest from the computer vision, NLP, and robotics communities. This growth has been facilitated by the creation of a large number of simulated environments (such as AI2-THOR, Habitat and CARLA), tasks (like point navigation, instruction following, and embodied question answering), and associated leaderboards. While this diversity has been beneficial and organic, it has also fragmented the community: a huge amount of effort is required to do something as simple as taking a model trained in one environment and testing it in another. This discourages good science. We introduce AllenAct, a modular and flexible learning framework designed with a focus on the unique requirements of Embodied AI research. AllenAct provides first-class support for a growing collection of embodied environments, tasks and algorithms, provides reproductions of state-of-the-art models and includes extensive documentation, tutorials, start-up code, and pre-trained models. We hope that our framework makes Embodied AI more accessible and encourages new researchers to join this exciting area. The framework can be accessed at: https://allenact.org/
This paper investigates two techniques for developing efficient self-supervised vision transformers (EsViT) for visual representation learning. First, we show through a comprehensive empirical study that multi-stage architectures with sparse self-att entions can significantly reduce modeling complexity but with a cost of losing the ability to capture fine-grained correspondences between image regions. Second, we propose a new pre-training task of region matching which allows the model to capture fine-grained region dependencies and as a result significantly improves the quality of the learned vision representations. Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation, outperforming prior arts with around an order magnitude of higher throughput. When transferring to downstream linear classification tasks, EsViT outperforms its supervised counterpart on 17 out of 18 datasets. The code and models will be publicly available.
Transfer learning is widely used in deep neural network models when there are few labeled examples available. The common approach is to take a pre-trained network in a similar task and finetune the model parameters. This is usually done blindly witho ut a pre-selection from a set of pre-trained models, or by finetuning a set of models trained on different tasks and selecting the best performing one by cross-validation. We address this problem by proposing an approach to assess the relationship between visual tasks and their task-specific models. Our method uses Representation Similarity Analysis (RSA), which is commonly used to find a correlation between neuronal responses from brain data and models. With RSA we obtain a similarity score among tasks by computing correlations between models trained on different tasks. Our method is efficient as it requires only pre-trained models, and a few images with no further training. We demonstrate the effectiveness and efficiency of our method for generating task taxonomy on Taskonomy dataset. We next evaluate the relationship of RSA with the transfer learning performance on Taskonomy tasks and a new task: Pascal VOC semantic segmentation. Our results reveal that models trained on tasks with higher similarity score show higher transfer learning performance. Surprisingly, the best transfer learning result for Pascal VOC semantic segmentation is not obtained from the pre-trained model on semantic segmentation, probably due to the domain differences, and our method successfully selects the high performing models.
emph{Objective and Impact Statement}. With the renaissance of deep learning, automatic diagnostic systems for computed tomography (CT) have achieved many successful applications. However, they are mostly attributed to careful expert annotations, whic h are often scarce in practice. This drives our interest to the unsupervised representation learning. emph{Introduction}. Recent studies have shown that self-supervised learning is an effective approach for learning representations, but most of them rely on the empirical design of transformations and pretext tasks. emph{Methods}. To avoid the subjectivity associated with these methods, we propose the MVCNet, a novel unsupervised three dimensional (3D) representation learning method working in a transformation-free manner. We view each 3D lesion from different orientations to collect multiple two dimensional (2D) views. Then, an embedding function is learned by minimizing a contrastive loss so that the 2D views of the same 3D lesion are aggregated, and the 2D views of different lesions are separated. We evaluate the representations by training a simple classification head upon the embedding layer. emph{Results}. Experimental results show that MVCNet achieves state-of-the-art accuracies on the LIDC-IDRI (89.55%), LNDb (77.69%) and TianChi (79.96%) datasets for emph{unsupervised representation learning}. When fine-tuned on 10% of the labeled data, the accuracies are comparable to the supervised learning model (89.46% vs. 85.03%, 73.85% vs. 73.44%, 83.56% vs. 83.34% on the three datasets, respectively). emph{Conclusion}. Results indicate the superiority of MVCNet in emph{learning representations with limited annotations}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا