ترغب بنشر مسار تعليمي؟ اضغط هنا

Meissner-London susceptibility of superconducting right circular cylinders in an axial magnetic field

166   0   0.0 ( 0 )
 نشر من قبل Ruslan Prozorov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ruslan Prozorov




اسأل ChatGPT حول البحث

Magnetic susceptibility of non-ellipsoidal samples is a long-standing problem in experimental studies of magnetism and superconductivity. Here the quantitative description of the Meissner-London response (no Abrikosov vortices) of right circular cylinders in an axial magnetic field is given. The three-dimensional adaptive finite-element modeling was used to calculate the total magnetic moment, m, in a wide range of London penetration depth, lambda, to sample size ratios. By fitting the numerical data, the closed-form universal magnetic susceptibility is formulated involving only sample dimensions and lambda, thus providing a recipe for determining the London penetration depth from the accurate magnetic susceptibility measurements. Detailed examples of the experimental data analysis using the developed approach are given. The results can be extended to the frequently used cuboid-shaped samples.



قيم البحث

اقرأ أيضاً

122 - Ruslan Prozorov 2021
A simple procedure to extract anisotropic London penetration depth components from the magnetic susceptibility measurements in realistic samples of cuboidal shape is described.
80 - F. Simon , A. Janossy , T. Feher 2003
The magnetic field dependence of the spin-susceptibility, $chi_{s}$ was measured in the superconducting state of high purity MgB$_{2}$ fine powders below 1.3 T. $chi_{s}$ was determined from the intensity of the conduction electron spin resonance spe ctra at 3.8, 9.4, and 35 GHz. At the lowest magnetic fields (0.14 T), a gap opens in the density of states at the Fermi energy and, accordingly, $chi_{s}(T)$ is small at low temperatures. Fields above 0.2 T (about 15 % of $H^{c}_{c2}$, the minimum upper critical field), destroy the gap. The field induced $chi_{s}$ is much larger than expected from current superconductor models of MgB$_{2}$.
Measurements of the ac response represent a widely-used method for probing the properties of superconductors. In the surface superconducting state (SSS), increase of the current beyond the surface critical current $I_c$ leads to breakdown of SSS and penetration of external magnetic field into the sample bulk. An interesting free-of-bulk system in SSS is offered by thin-walled superconducting cylinders. The critical state model (CSM) asserts the ac susceptibility $chi$ to exhibit jumps as a function of the external ac field amplitude $H_{ac}$, because of the periodic destruction and restoration of SSS in the cylinder wall. Here, we investigate experimentally the low-frequency (128-8192,Hz) ac response of thin-walled superconducting cylinders in superimposed dc and ac magnetic fields applied parallel to the cylinder axis. Distinct from the CSM predictions, experiments reveal that $chi$ is a smooth function of $H_{ac}$. For the explanation of our observations we propose a phenomenological model of partial penetration of magnetic flux (PPMF). The PPMF model implies that after a restoration of the superconducting state, the magnetic fields inside and outside the cylinder are not equal, and the value of the penetrating flux is random for each penetration. This model fits very well to the experimental data on the temperature dependence of the first-harmonic $chi_1$ at any $H_{ac}$ and dc field magnitude. However, in a certain temperature range the values of physical parameters deduced within the framework of the PPMF model are questionable.
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at T~0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBCO sample, indicates that the superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T.
We have measured the nonlinear response to the ac magnetic field in the superconducting weak ferromagnet Ru-1222, at different regimes of sample cooling which provides unambiguous evidence of the interplay of the domain structure and the vorticity in the superconducting state. This is {em direct} proof of coexistence of ferromagnetic and superconductive order parameters in high-$T_c$ ruthenocuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا