ﻻ يوجد ملخص باللغة العربية
Magnetic susceptibility of non-ellipsoidal samples is a long-standing problem in experimental studies of magnetism and superconductivity. Here the quantitative description of the Meissner-London response (no Abrikosov vortices) of right circular cylinders in an axial magnetic field is given. The three-dimensional adaptive finite-element modeling was used to calculate the total magnetic moment, m, in a wide range of London penetration depth, lambda, to sample size ratios. By fitting the numerical data, the closed-form universal magnetic susceptibility is formulated involving only sample dimensions and lambda, thus providing a recipe for determining the London penetration depth from the accurate magnetic susceptibility measurements. Detailed examples of the experimental data analysis using the developed approach are given. The results can be extended to the frequently used cuboid-shaped samples.
A simple procedure to extract anisotropic London penetration depth components from the magnetic susceptibility measurements in realistic samples of cuboidal shape is described.
The magnetic field dependence of the spin-susceptibility, $chi_{s}$ was measured in the superconducting state of high purity MgB$_{2}$ fine powders below 1.3 T. $chi_{s}$ was determined from the intensity of the conduction electron spin resonance spe
Measurements of the ac response represent a widely-used method for probing the properties of superconductors. In the surface superconducting state (SSS), increase of the current beyond the surface critical current $I_c$ leads to breakdown of SSS and
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at T~0.7 K in both the
We have measured the nonlinear response to the ac magnetic field in the superconducting weak ferromagnet Ru-1222, at different regimes of sample cooling which provides unambiguous evidence of the interplay of the domain structure and the vorticity in