ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Field Induced Density of States in Superconducting MgB$_{2}$: Measurement of Conduction Electron Spin-Susceptibility

81   0   0.0 ( 0 )
 نشر من قبل Mr. Ferenc Simon
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic field dependence of the spin-susceptibility, $chi_{s}$ was measured in the superconducting state of high purity MgB$_{2}$ fine powders below 1.3 T. $chi_{s}$ was determined from the intensity of the conduction electron spin resonance spectra at 3.8, 9.4, and 35 GHz. At the lowest magnetic fields (0.14 T), a gap opens in the density of states at the Fermi energy and, accordingly, $chi_{s}(T)$ is small at low temperatures. Fields above 0.2 T (about 15 % of $H^{c}_{c2}$, the minimum upper critical field), destroy the gap. The field induced $chi_{s}$ is much larger than expected from current superconductor models of MgB$_{2}$.



قيم البحث

اقرأ أيضاً

203 - J.C. Loudon , S. Yazdi , T. Kasama 2015
We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is part icularly useful for MgB$_2$, where these quantities vary with the applied magnetic field and values are difficult to obtain at low field or in the $c$-direction. We obtained images of flux vortices from an MgB$_2$ single crystal cut in the $ac$ plane by focussed ion beam milling and tilted to $45^circ$ with respect to the electron beam about its $a$ axis. A new method was developed to simulate these images which accounted for vortices with a non-zero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence lengths. This gave penetration depths $Lambda_{ab}=100pm 35$ nm and $Lambda_c=120pm 15$ nm at 10.8 K in a field of 4.8 mT. The large error in $Lambda_{ab}$ is a consequence of tilting the sample about $a$ and had it been tilted about $c$, the errors would be reversed. Thus, obtaining the most precise values requires taking images of the flux lattice with the sample tilted in more than one direction. In a previous paper, we obtained a more precise value using a sample cut in the $ab$ plane. Using this value gives $Lambda_{ab}=107pm 8$ nm, $Lambda_c=120pm 15$ nm, $xi_{ab}=39pm 11$ nm and $xi_c=35pm 10$ nm which agree well with measurements made using other techniques. The experiment required two days to conduct and does not require large-scale facilities. It was performed on a very small sample: $30times 15$ microns and 200 nm thick so this method could prove useful for characterising new superconductors where only small single crystals are available.
100 - S. Ouazi , J. Bobroff , H. Alloul 2005
Oxygen NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high Tc YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above Tc , with a typical extension xi=3 cell units for Zn and xi>=3 for Ni. In addition, Zn is observed to induce a local density of states near the Fermi Energy in its neighbourhood, which also decays over about 3 cell units. Its magnitude decreases sharply with increasing temperature. This allows direct comparison with the STM observations done in BiSCO.
Recent studies establish that the cuprate pseudogap phase is susceptible at low temperatures to forming not only a $d$-symmetry superconducting (SC) state, but also a $d$-symmetry form factor (dFF) density wave (DW) state. The concurrent emergence of such distinct and unusual states from the pseudogap motivates theories that they are intertwined i.e derived from a quantum composite of dissimilar broken-symmetry orders. Some composite order theories predict that the balance between the different components can be altered, for example at superconducting vortex cores. Here, we introduce sublattice phase-resolved electronic structure imaging as a function of magnetic field and find robust dFF DW states induced at each vortex. They are predominantly unidirectional and co-oriented (nematic), exhibiting strong spatial-phase coherence. At each vortex we also detect the field-induced conversion of the SC to DW components and demonstrate that this occurs at precisely the eight momentum-space locations predicted in many composite order theories. These data provided direct microscopic evidence for the existence of composite order in the cuprates, and new indications of how the DW state becomes long-range ordered in high magnetic fields.
150 - T. Hattori , K. Karube , Y. Ihara 2013
In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fie lds perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].
To investigate spin susceptibility in a superconducting (SC) state, we measured the $^{125}$Te-nuclear magnetic resonance (NMR) Knight shifts at magnetic fields ($H$) up to 6.5 T along the $b$ and $c$ axes of single-crystal UTe$_2$, a promising candi date for a spin-triplet superconductor. In the SC state, the Knight shifts along the $b$ and $c$ axes ($K_b$ and $K_c$, respectively) decreased slightly and the decrease in $K_b$ was almost constant up to 6.5 T. The reduction in $K_c$ decreased with increasing $H$, and $K_c$ was unchanged through the SC transition temperature at 5.5 T, excluding the possibility of spin-singlet pairing. Our results indicate that spin susceptibilities along the $b$ and $c$ axes slightly decrease in the SC state in low $H$, and the $H$ response of SC spin susceptibility is anisotropic in the $bc$ plane. We discuss the possible $d$-vector state within the spin-triplet scenario and suggest that the dominant $d$-vector component for the case of $H parallel b$ changes above 13 T, where $T_{rm c}$ increases with increasing $H$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا