ﻻ يوجد ملخص باللغة العربية
We characterize the magnetic properties and domain structure of Pt/Ni/Co asymmetric superlattices in comparison to the more established Pt/Co/Ni structure. This reversal in stacking sequence leads to a marked drop in interfacial magnetic anisotropy and the magnitude of the interfacial Dzyaloshinskii-Moriya interaction (DMI) as inferred from the DW structure, which we speculate could be related to a degradation of the Pt/Co interface when Pt is deposited on top of the Co layer. Lorentz transmission electron microscopy reveals exclusively Neel type domain walls and, with a perpendicular field, Neel skyrmions in the Pt/Co/Ni films. Conversely, the Pt/Ni/Co samples show only achiral Bloch domain walls, which leads to the formation of achiral Bloch ($Q=1$) and type II bubbles ($Q=0$) at increased perpendicular field. Combined with the reduced anisotropy leading to greater bubble densities, the latter case makes for an excellent test bed to examine the benefits of topological charge on stability. Simultaneous observation of Bloch and type II bubbles shows a roughly 50 mT larger annihilation field for the former. An in-plane component to the magnetic field is shown to both impact the structure of the formed bubbles and separately suppress the topological benefit.
We demonstrate the formation of metastable Neel-type skyrmion arrays in Pt/Co/Ni/Ir multi-layers at zero-field following textit{ex situ} application of an in-plane magnetic field using Lorentz transmission electron microscopy. The resultant skyrmion
We have studied the effects of electrical current pulses on skyrmion formation in a series of Co/Ni/Pt-based multilayers. Transmission X-ray microscopy reveals that by applying electrical current pulses of duration and current density on the order of
We report an enhancement of the anomalous Nernst effect (ANE) in Ni/Pt (001) epitaxial superlattices. The transport and magneto-thermoelectric properties were investigated for the Ni/Pt superlattices with various Ni layer thicknesses (${it t}$). The
Moire superlattices comprised of stacked two-dimensional materials present a versatile platform for engineering and investigating new emergent quantum states of matter. At present, the vast majority of investigated systems have long moire wavelengths
Two-dimensional (2D) van der Waals (vdW) magnetic materials have recently been introduced as a new horizon in materials science and enable the potential applications for next-generation spintronic devices. Here, in this communication, the observation