ﻻ يوجد ملخص باللغة العربية
Moire superlattices comprised of stacked two-dimensional materials present a versatile platform for engineering and investigating new emergent quantum states of matter. At present, the vast majority of investigated systems have long moire wavelengths, but investigating these effects at shorter, incommensurate wavelengths, and at higher energy scales, remains a challenge. Here, we employ angle-resolved photoemission spectroscopy (ARPES) with sub-micron spatial resolution to investigate a series of different moire superlattices which span a wide range of wavelengths, from a short moire wavelength of 0.5 nm for a graphene/WSe2 (g/WSe2) heterostructure, to a much longer wavelength of 8 nm for a WS2/WSe2 heterostructure. We observe the formation of minibands with distinct dispersions formed by the moire potential in both systems. Finally, we discover that the WS2/WSe2 heterostructure can imprint a surprisingly large moire potential on a third, separate layer of graphene (g/WS2/WSe2), suggesting a new avenue for engineering moire superlattices in two-dimensional materials.
We find a systematic reappearance of massive Dirac features at the edges of consecutive minibands formed at magnetic fields B_{p/q}= pphi_0/(qS) providing rational magnetic flux through a unit cell of the moire superlattice created by a hexagonal sub
Twisted bilayers of van der Waals materials have recently attracted great attention due to their tunable strongly correlated phenomena. Here, we investigate the chirality-specific physics in 3D moire superlattices induced by Eshelby twist. Our direct
Moire superlattices provide a powerful tool to engineer novel quantum phenomena in two-dimensional (2D) heterostructures, where the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice
The atomic structure at the interface between a two-dimensional (2D) and a three-dimensional (3D) material influences properties such as contact resistance, photo-response, and high-frequency performance. Moire engineering has yet to be explored for
We characterize the magnetic properties and domain structure of Pt/Ni/Co asymmetric superlattices in comparison to the more established Pt/Co/Ni structure. This reversal in stacking sequence leads to a marked drop in interfacial magnetic anisotropy a