ترغب بنشر مسار تعليمي؟ اضغط هنا

A lightweight deep learning based cloud detection method for Sentinel-2A imagery fusing multi-scale spectral and spatial features

55   0   0.0 ( 0 )
 نشر من قبل Jun Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Clouds are a very important factor in the availability of optical remote sensing images. Recently, deep learning-based cloud detection methods have surpassed classical methods based on rules and physical models of clouds. However, most of these deep models are very large which limits their applicability and explainability, while other models do not make use of the full spectral information in multi-spectral images such as Sentinel-2. In this paper, we propose a lightweight network for cloud detection, fusing multi-scale spectral and spatial features (CDFM3SF) and tailored for processing all spectral bands in Sentinel- 2A images. The proposed method consists of an encoder and a decoder. In the encoder, three input branches are designed to handle spectral bands at their native resolution and extract multiscale spectral features. Three novel components are designed: a mixed depth-wise separable convolution (MDSC) and a shared and dilated residual block (SDRB) to extract multi-scale spatial features, and a concatenation and sum (CS) operation to fuse multi-scale spectral and spatial features with little calculation and no additional parameters. The decoder of CD-FM3SF outputs three cloud masks at the same resolution as input bands to enhance the supervision information of small, middle and large clouds. To validate the performance of the proposed method, we manually labeled 36 Sentinel-2A scenes evenly distributed over mainland China. The experiment results demonstrate that CD-FM3SF outperforms traditional cloud detection methods and state-of-theart deep learning-based methods in both accuracy and speed.



قيم البحث

اقرأ أيضاً

Current Computer-Aided Diagnosis (CAD) methods mainly depend on medical images. The clinical information, which usually needs to be considered in practical clinical diagnosis, has not been fully employed in CAD. In this paper, we propose a novel deep learning-based method for fusing Magnetic Resonance Imaging (MRI)/Computed Tomography (CT) images and clinical information for diagnostic tasks. Two paths of neural layers are performed to extract image features and clinical features, respectively, and at the same time clinical features are employed as the attention to guide the extraction of image features. Finally, these two modalities of features are concatenated to make decisions. We evaluate the proposed method on its applications to Alzheimers disease diagnosis, mild cognitive impairment converter prediction and hepatic microvascular invasion diagnosis. The encouraging experimental results prove the values of the image feature extraction guided by clinical features and the concatenation of two modalities of features for classification, which improve the performance of diagnosis effectively and stably.
Deep learning has achieved good success in cardiac magnetic resonance imaging (MRI) reconstruction, in which convolutional neural networks (CNNs) learn a mapping from the undersampled k-space to the fully sampled images. Although these deep learning methods can improve the reconstruction quality compared with iterative methods without requiring complex parameter selection or lengthy reconstruction time, the following issues still need to be addressed: 1) all these methods are based on big data and require a large amount of fully sampled MRI data, which is always difficult to obtain for cardiac MRI; 2) the effect of coil correlation on reconstruction in deep learning methods for dynamic MR imaging has never been studied. In this paper, we propose an unsupervised deep learning method for multi-coil cine MRI via a time-interleaved sampling strategy. Specifically, a time-interleaved acquisition scheme is utilized to build a set of fully encoded reference data by directly merging the k-space data of adjacent time frames. Then these fully encoded data can be used to train a parallel network for reconstructing images of each coil separately. Finally, the images from each coil are combined via a CNN to implicitly explore the correlations between coils. The comparisons with classic k-t FOCUSS, k-t SLR, L+S and KLR methods on in vivo datasets show that our method can achieve improved reconstruction results in an extremely short amount of time.
Google Earth Engine (GEE) provides a convenient platform for applications based on optical satellite imagery of large areas. With such data sets, the detection of cloud is often a necessary prerequisite step. Recently, deep learning-based cloud detec tion methods have shown their potential for cloud detection but they can only be applied locally, leading to inefficient data downloading time and storage problems. This letter proposes a method to directly perform cloud detection in Landsat-8 imagery in GEE based on deep learning (DeepGEE-CD). A deep neural network (DNN) was first trained locally, and then the trained DNN was deployed in the JavaScript client of GEE. An experiment was undertaken to validate the proposed method with a set of Landsat-8 images and the results show that DeepGEE-CD outperformed the widely used function of mask (Fmask) algorithm. The proposed DeepGEE-CD approach can accurately detect cloud in Landsat-8 imagery without downloading it, making it a promising method for routine cloud detection of Landsat-8 imagery in GEE.
Convolutional neural network (CNN)-based image denoising methods have been widely studied recently, because of their high-speed processing capability and good visual quality. However, most of the existing CNN-based denoisers learn the image prior fro m the spatial domain, and suffer from the problem of spatially variant noise, which limits their performance in real-world image denoising tasks. In this paper, we propose a discrete wavelet denoising CNN (WDnCNN), which restores images corrupted by various noise with a single model. Since most of the content or energy of natural images resides in the low-frequency spectrum, their transformed coefficients in the frequency domain are highly imbalanced. To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum. Moreover, we employ a band discriminative training (BDT) criterion to enhance the model regression. We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers. Experimental results show that WDnCNN achieves promising performance in both synthetic and real noise reduction, making it a potential solution to many practical image denoising applications.
Recently, the single image super-resolution (SISR) approaches with deep and complex convolutional neural network structures have achieved promising performance. However, those methods improve the performance at the cost of higher memory consumption, which is difficult to be applied for some mobile devices with limited storage and computing resources. To solve this problem, we present a lightweight multi-scale feature interaction network (MSFIN). For lightweight SISR, MSFIN expands the receptive field and adequately exploits the informative features of the low-resolution observed images from various scales and interactive connections. In addition, we design a lightweight recurrent residual channel attention block (RRCAB) so that the network can benefit from the channel attention mechanism while being sufficiently lightweight. Extensive experiments on some benchmarks have confirmed that our proposed MSFIN can achieve comparable performance against the state-of-the-arts with a more lightweight model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا