ترغب بنشر مسار تعليمي؟ اضغط هنا

Transfer Learning on Multi-Fidelity Data

108   0   0.0 ( 0 )
 نشر من قبل Dong Song
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural networks (NNs) are often used as surrogates or emulators of partial differential equations (PDEs) that describe the dynamics of complex systems. A virtually negligible computational cost of such surrogates renders them an attractive tool for ensemble-based computation, which requires a large number of repeated PDE solves. Since the latter are also needed to generate sufficient data for NN training, the usefulness of NN-based surrogates hinges on the balance between the training cost and the computational gain stemming from their deployment. We rely on multi-fidelity simulations to reduce the cost of data generation for subsequent training of a deep convolutional NN (CNN) using transfer learning. High- and low-fidelity images are generated by solving PDEs on fine and coarse meshes, respectively. We use theoretical results for multilevel Monte Carlo to guide our choice of the numbers of images of each kind. We demonstrate the performance of this multi-fidelity training strategy on the problem of estimation of the distribution of a quantity of interest, whose dynamics is governed by a system of nonlinear PDEs (parabolic PDEs of multi-phase flow in heterogeneous porous media) with uncertain/random parameters. Our numerical experiments demonstrate that a mixture of a comparatively large number of low-fidelity data and smaller numbers of high- and low-fidelity data provides an optimal balance of computational speed-up and prediction accuracy. The former is reported relative to both CNN training on high-fidelity images only and Monte Carlo solution of the PDEs. The latter is expressed in terms of both the Wasserstein distance and the Kullback-Leibler divergence.

قيم البحث

اقرأ أيضاً

Random ordinary differential equations (RODEs), i.e. ODEs with random parameters, are often used to model complex dynamics. Most existing methods to identify unknown governing RODEs from observed data often rely on strong prior knowledge. Extracting the governing equations from data with less prior knowledge remains a great challenge. In this paper, we propose a deep neural network, called RODE-Net, to tackle such challenge by fitting a symbolic expression of the differential equation and the distribution of parameters simultaneously. To train the RODE-Net, we first estimate the parameters of the unknown RODE using the symbolic networks cite{long2019pde} by solving a set of deterministic inverse problems based on the measured data, and use a generative adversarial network (GAN) to estimate the true distribution of the RODEs parameters. Then, we use the trained GAN as a regularization to further improve the estimation of the ODEs parameters. The two steps are operated alternatively. Numerical results show that the proposed RODE-Net can well estimate the distribution of model parameters using simulated data and can make reliable predictions. It is worth noting that, GAN serves as a data driven regularization in RODE-Net and is more effective than the $ell_1$ based regularization that is often used in system identifications.
This is the third paper in a series in which we develop machine learning (ML) moment closure models for the radiative transfer equation (RTE). In our previous work cite{huang2021gradient}, we proposed an approach to learn the gradient of the unclosed high order moment, which performs much better than learning the moment itself and the conventional $P_N$ closure. However, while the ML moment closure has better accuracy, it is not able to guarantee hyperbolicity and has issues with long time stability. In our second paper cite{huang2021hyperbolic}, we identified a symmetrizer which leads to conditions that enforce that the gradient based ML closure is symmetrizable hyperbolic and stable over long time. The limitation of this approach is that in practice the highest moment can only be related to four, or fewer, lower moments. In this paper, we propose a new method to enforce the hyperbolicity of the ML closure model. Motivated by the observation that the coefficient matrix of the closure system is a lower Hessenberg matrix, we relate its eigenvalues to the roots of an associated polynomial. We design two new neural network architectures based on this relation. The ML closure model resulting from the first neural network is weakly hyperbolic and guarantees the physical characteristic speeds, i.e., the eigenvalues are bounded by the speed of light. The second model is strictly hyperbolic and does not guarantee the boundedness of the eigenvalues. Several benchmark tests including the Gaussian source problem and the two-material problem show the good accuracy, stability and generalizability of our hyperbolic ML closure model.
Learning mappings of data on manifolds is an important topic in contemporary machine learning, with applications in astrophysics, geophysics, statistical physics, medical diagnosis, biochemistry, 3D object analysis. This paper studies the problem of learning real-valued functions on manifolds through filtered hyperinterpolation of input-output data pairs where the inputs may be sampled deterministically or at random and the outputs may be clean or noisy. Motivated by the problem of handling large data sets, it presents a parallel data processing approach which distributes the data-fitting task among multiple servers and synthesizes the fitted sub-models into a global estimator. We prove quantitative relations between the approximation quality of the learned function over the entire manifold, the type of target function, the number of servers, and the number and type of available samples. We obtain the approximation rates of convergence for distributed and non-distributed approaches. For the non-distributed case, the approximation order is optimal.
184 - Lulu Zhang , Tao Luo , Yaoyu Zhang 2021
In this paper, we propose a model-operator-data network (MOD-Net) for solving PDEs. A MOD-Net is driven by a model to solve PDEs based on operator representation with regularization from data. In this work, we use a deep neural network to parameteriz e the Greens function. The empirical risk consists of the mean square of the governing equation, boundary conditions, and a few labels, which are numerically computed by traditional schemes on coarse grid points with cheap computation cost. With only the labeled dataset or only the model constraints, it is insufficient to accurately train a MOD-Net for complicate problems. Intuitively, the labeled dataset works as a regularization in addition to the model constraints. The MOD-Net is much efficient than original neural operator because the MOD-Net also uses the information of governing equation and the boundary conditions of the PDE rather than purely the expensive labels. Since the MOD-Net learns the Greens function of a PDE, it solves a type of PDEs but not a specific case. We numerically show MOD-Net is very efficient in solving Poisson equation and one-dimensional Boltzmann equation. For non-linear PDEs, where the concept of the Greens function does not apply, the non-linear MOD-Net can be similarly used as an ansatz for solving non-linear PDEs.
This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a superv ised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural-network type functions. In a well-posed elliptic PDE setting, when the hypothesis space consists of feedforward neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, the gradient descent method can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions and the effectiveness of the proposed solver in avoiding numerical issues that hampers the traditional approach when a large data set becomes available, e.g., large matrix inversion.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا