ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of SKA to dark matter induced radio emission

192   0   0.0 ( 0 )
 نشر من قبل Yue-Lin Sming Tsai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventionally, one can constrain the dark matter (DM) interaction with DM mass heavier than GeV by searching for DM induced synchrotron emission in the radio frequency band. However, an MeV DM can also generate detectable radio emission if electrons and positrons produced by DM annihilation or decay undergoes inverse Compton scattering (ICS) with the cosmic microwave background. The upcoming radio telescope Square Kilometre Array (SKA) is designed to operate with extremely high sensitivity. We investigate the capability of the SKA to detect DM particles in a board mass range from MeV to TeV, for both annihilation and decay scenarios. In this paper, we consider the sensitivities of the future SKA first and second phase (SKA1 and SKA2). As a comprehensive study, we systematically study the impacts on the DM-induced signal computation from the magnetic field strengths and particle diffusion coefficients. We compare the detection potential of four very different sources: two dwarf spheroidal galaxies (Draco and Segue 1), one radio-poor cluster (A2199), and one DM-rich ultra-diffuse galaxy (Dragonfly 44). We project the SKA1 and SKA2 sensitivities with the exposure of 100 hours on the annihilation cross section and decay time for DM mass from MeV to TeV by considering two different leptonic final states $e^+ e^-$ and $mu^+mu^-$.



قيم البحث

اقرأ أيضاً

In the era of radio astronomy, the high sensitivity of the Square Kilometre Array (SKA) could play a decisive role in the detection of new radio sources. In this work, we study the SKA sensitivity to the synchrotron radio emission expected by the ann ihilation of TeV DM candidate in the Draco dwarf spheroidal galaxy. On the one hand, we consider model-independent DM candidates: we find out that with 1000 hours of data-taking, SKA1-MID will be able to exclude up to 10 TeV thermal DM candidates that annihilate in $W^+W^-$ and $bbar b$ channels. We also study as these constraints improve by including a density enhancement due to a DM-spike associated with an intermediate-mass black hole in Draco. On the other hand, we consider extra-dimensional brane-world DM candidates, dubbed branons. In this specific scenario, SKA allows us to set constraints on the branon parameter space ($f$,$M$), where $f$ is related to the coupling of the branon to the Standard Model particles and $M$ is the mass of the branon itself. In particular, we consider two different branon DM candidates. We find out that SKA will be able to set more stringent constraints on the branon DM candidate required in order to fit the AMS-02 data, yet the sensitivity of the instrument should be improved in order to study the branon candidate for the Galactic Centre. Nonetheless, we show that SKA represents - among other detectors - the most promising instrument for multi-wavelength detection of synchrotron radio emission by annihilating multi-TeV DM.
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.
We analyse sensitivity of the gigaton volume telescope Baikal-GVD for detection of neutrino signal from dark matter annihilations or decays in the Galactic Center. Expected bounds on dark matter annihilation cross section and its lifetime are found for several annihilation/decay channels.
We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels $bbar{b}$, $W^+W^-$ and $tau^+tau^-$ we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا