ترغب بنشر مسار تعليمي؟ اضغط هنا

SKA-Phase 1 sensitivity for synchrotron radio emission from multi-TeV Dark Matter candidates

60   0   0.0 ( 0 )
 نشر من قبل Miguel Mendez-Isla
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the era of radio astronomy, the high sensitivity of the Square Kilometre Array (SKA) could play a decisive role in the detection of new radio sources. In this work, we study the SKA sensitivity to the synchrotron radio emission expected by the annihilation of TeV DM candidate in the Draco dwarf spheroidal galaxy. On the one hand, we consider model-independent DM candidates: we find out that with 1000 hours of data-taking, SKA1-MID will be able to exclude up to 10 TeV thermal DM candidates that annihilate in $W^+W^-$ and $bbar b$ channels. We also study as these constraints improve by including a density enhancement due to a DM-spike associated with an intermediate-mass black hole in Draco. On the other hand, we consider extra-dimensional brane-world DM candidates, dubbed branons. In this specific scenario, SKA allows us to set constraints on the branon parameter space ($f$,$M$), where $f$ is related to the coupling of the branon to the Standard Model particles and $M$ is the mass of the branon itself. In particular, we consider two different branon DM candidates. We find out that SKA will be able to set more stringent constraints on the branon DM candidate required in order to fit the AMS-02 data, yet the sensitivity of the instrument should be improved in order to study the branon candidate for the Galactic Centre. Nonetheless, we show that SKA represents - among other detectors - the most promising instrument for multi-wavelength detection of synchrotron radio emission by annihilating multi-TeV DM.



قيم البحث

اقرأ أيضاً

Conventionally, one can constrain the dark matter (DM) interaction with DM mass heavier than GeV by searching for DM induced synchrotron emission in the radio frequency band. However, an MeV DM can also generate detectable radio emission if electrons and positrons produced by DM annihilation or decay undergoes inverse Compton scattering (ICS) with the cosmic microwave background. The upcoming radio telescope Square Kilometre Array (SKA) is designed to operate with extremely high sensitivity. We investigate the capability of the SKA to detect DM particles in a board mass range from MeV to TeV, for both annihilation and decay scenarios. In this paper, we consider the sensitivities of the future SKA first and second phase (SKA1 and SKA2). As a comprehensive study, we systematically study the impacts on the DM-induced signal computation from the magnetic field strengths and particle diffusion coefficients. We compare the detection potential of four very different sources: two dwarf spheroidal galaxies (Draco and Segue 1), one radio-poor cluster (A2199), and one DM-rich ultra-diffuse galaxy (Dragonfly 44). We project the SKA1 and SKA2 sensitivities with the exposure of 100 hours on the annihilation cross section and decay time for DM mass from MeV to TeV by considering two different leptonic final states $e^+ e^-$ and $mu^+mu^-$.
We revisit the possibility of light scalar dark matter, in the MeV to GeV mass bracket and coupled to electrons through fermion or vector mediators, in light of significant experimental and observational advances that probe new physics below the GeV- scale. We establish new limits from electron colliders and fixed-target beams, and derive the strength of loop-induced processes that are probed by precision physics, among other laboratory probes. In addition, we compute the cooling bound from SN1987A, consider self-scattering, structure formation, and cosmological constraints as well as the limits from dark matter-electron scattering in direct detection experiments. We then show that the combination of constraints largely excludes the possibility that the galactic annihilation of these particles may explain the long-standing INTEGRAL excess of 511 keV photons as observed in the galactic bulge. As caveat to these conclusions we identify the resonant annihilation regime where the vector mediator goes nearly on-shell.
117 - Naoto Yokoi , Eiji Saitoh 2016
We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide gen eral mechanism for the dark matter emission, and, as a concrete example, an emission of dark matter axions from magnetic vortex strings in a type II superconductor are investigated along with possible experimental signatures.
172 - Joerg Jaeckel 2013
Dark matter made from non-thermally produced bosons can have very low, possibly sub-eV masses. Axions and hidden photons are prominent examples of such dark very weakly interacting light (slim) particles (WISPs). A suitable mechanism for their non-th ermal production is the misalignment mechanism. Their dominant interaction with Standard Model (SM) particles is via photons. In this note we want to go beyond these standard examples and discuss a wide range of scalar and pseudo-scalar bosons interacting with SM matter fermions via derivative interactions. Suitably light candidates arise naturally as pseudo-Nambu-Goldstone bosons. In particular we are interested in examples, inspired by familons, whose interactions have a non-trivial flavor structure.
258 - Peter T. Winslow 2010
We demonstrate a new model which uses an ADD type braneworld scenario to produce a multi-state theory of dark matter. Compactification of the extra dimensions onto a sphere leads to the association of a single complex scalar in the bulk with multiple Kaluza-Klein towers in an effective four-dimensional theory. A mutually interacting multi-state theory of dark matter arises naturally within which the dark matter states are identified with the lightest Kaluza-Klein particles of fixed magnetic quantum number. These states are protected from decay by a combination of a global U(1) symmetry and the continuous rotational symmetry about the polar axis of the spherical geometry. We briefly discuss the relic abundance calculation and investigate the spin-independent elastic scattering off nucleons of the lightest and next-to-lightest dark matter states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا