ترغب بنشر مسار تعليمي؟ اضغط هنا

Personalized Federated Learning by Structured and Unstructured Pruning under Data Heterogeneity

119   0   0.0 ( 0 )
 نشر من قبل Saeed Vahidian
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The traditional approach in FL tries to learn a single global model collaboratively with the help of many clients under the orchestration of a central server. However, learning a single global model might not work well for all clients participating in the FL under data heterogeneity. Therefore, the personalization of the global model becomes crucial in handling the challenges that arise with statistical heterogeneity and the non-IID distribution of data. Unlike prior works, in this work we propose a new approach for obtaining a personalized model from a client-level objective. This further motivates all clients to participate in federation even under statistical heterogeneity in order to improve their performance, instead of merely being a source of data and model training for the central server. To realize this personalization, we leverage finding a small subnetwork for each client by applying hybrid pruning (combination of structured and unstructured pruning), and unstructured pruning. Through a range of experiments on different benchmarks, we observed that the clients with similar data (labels) share similar personal parameters. By finding a subnetwork for each client ...

قيم البحث

اقرأ أيضاً

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks. This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks. The initial impression driven by our experimental results suggests that data heterogeneity is the dominant factor in the effectiveness of attacks and it may be a redemption for defending against backdooring as it makes the attack less efficient, more challenging to design effective attack strategies, and the attack result also becomes less predictable. However, with further investigations, we found data heterogeneity is more of a curse than a redemption as the attack effectiveness can be significantly boosted by simply adjusting the client-side backdooring timing. More importantly,data heterogeneity may result in overfitting at the local training of benign clients, which can be utilized by attackers to disguise themselves and fool skewed-feature based defenses. In addition, effective attack strategies can be made by adjusting attack data distribution. Finally, we discuss the potential directions of defending the curses brought by data heterogeneity. The results and lessons learned from our extensive experiments and analysis offer new insights for designing robust federated learning methods and systems
Originated from distributed learning, federated learning enables privacy-preserved collaboration on a new abstracted level by sharing the model parameters only. While the current research mainly focuses on optimizing learning algorithms and minimizin g communication overhead left by distributed learning, there is still a considerable gap when it comes to the real implementation on mobile devices. In this paper, we start with an empirical experiment to demonstrate computation heterogeneity is a more pronounced bottleneck than communication on the current generation of battery-powered mobile devices, and the existing methods are haunted by mobile stragglers. Further, non-identically distributed data across the mobile users makes the selection of participants critical to the accuracy and convergence. To tackle the computational and statistical heterogeneity, we utilize data as a tuning knob and propose two efficient polynomial-time algorithms to schedule different workloads on various mobile devices, when data is identically or non-identically distributed. For identically distributed data, we combine partitioning and linear bottleneck assignment to achieve near-optimal training time without accuracy loss. For non-identically distributed data, we convert it into an average cost minimization problem and propose a greedy algorithm to find a reasonable balance between computation time and accuracy. We also establish an offline profiler to quantify the runtime behavior of different devices, which serves as the input to the scheduling algorithms. We conduct extensive experiments on a mobile testbed with two datasets and up to 20 devices. Compared with the common benchmarks, the proposed algorithms achieve 2-100x speedup epoch-wise, 2-7% accuracy gain and boost the convergence rate by more than 100% on CIFAR10.
While federated learning traditionally aims to train a single global model across decentralized local datasets, one model may not always be ideal for all participating clients. Here we propose an alternative, where each client only federates with oth er relevant clients to obtain a stronger model per client-specific objectives. To achieve this personalization, rather than computing a single model average with constant weights for the entire federation as in traditional FL, we efficiently calculate optimal weighted model combinations for each client, based on figuring out how much a client can benefit from anothers model. We do not assume knowledge of any underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest, enabling greater flexibility for personalization. We evaluate and characterize our method on a variety of federated settings, datasets, and degrees of local data heterogeneity. Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
Federated learning (FL) is becoming a popular paradigm for collaborative learning over distributed, private datasets owned by non-trusting entities. FL has seen successful deployment in production environments, and it has been adopted in services suc h as virtual keyboards, auto-completion, item recommendation, and several IoT applications. However, FL comes with the challenge of performing training over largely heterogeneous datasets, devices, and networks that are out of the control of the centralized FL server. Motivated by this inherent setting, we make a first step towards characterizing the impact of device and behavioral heterogeneity on the trained model. We conduct an extensive empirical study spanning close to 1.5K unique configurations on five popular FL benchmarks. Our analysis shows that these sources of heterogeneity have a major impact on both model performance and fairness, thus sheds light on the importance of considering heterogeneity in FL system design.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا