ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate a polarization-entangled photon source at 810 nm using a type-II phase-matched PPKTP crystal pumped by a low-cost, broadband laser diode with a central wavelength of 405 nm and a typical bandwidth of 0.53 nm. The PPKTP crystal is placed in a Sagnac-loop to realize the compact size and high stability. The downconverted biphotons, the signal and the idler, have typical bandwidths of 5.57 nm and 7.32 nm. We prepare two Bell states |Psi+> and |Psi-> with the fidelities of 0.948+-0.004 and 0.963+-0.002. In polarization correlation measurement, the visibilities are all higher than 96.2%, and in the Bell inequality test, the S value can achieve 2.78+-0.01. To our knowledge, this experiment is the first to combine a multi-mode pump laser with a Sagnac-loop configuration. This high-quality and low-cost entangled photon source may have many practical applications in quantum information processing.
We demonstrate pulsed polarization-entangled photons generated from a periodically poled $mathrm{KTiOPO_4}$ (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied
We designed and implemented a novel combination of a Sagnac-interferometer with a Mach-Zehnder interferometer for a source of polarization-entangled photons. The new versatile configuration does not require multi-wavelength polarization optics, yet i
High-fidelity polarization-entangled photons are a powerful resource for quantum communication, distributing entanglement and quantum teleportation. The Bell-CHSH inequality $Sleq2$ is violated by bipartite entanglement and only maximally entangled s
We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization ent
We report the generation of polarization-entangled photons by femtosecond-pulse-pumped spontaneous parametric down-conversion in a cascade of two type-I crystals. Highly entangled pulsed states were obtained by introducing a temporal delay between th