ﻻ يوجد ملخص باللغة العربية
We analyze the propagation dynamics of radially polarized symmetric Airy beams (R-SABs) in a (2+1)-dimensional optical system with fractional diffraction, modeled by the fractional Schrodinger equation (FSE) characterized by the Levy index. The autofocusing effect featured by such beams becomes stronger, while the focal length becomes shorter, with the increase of . The effect of the intrinsic vorticity on the autofocusing dynamics of the beams is considered too. Then, the ability of R-SABs to capture nano-particles by means of radiation forces is explored, and multiple capture positions emerging in the course of the propagation are identified. Finally, we find that the propagation of the vortical R-SABs with an off-axis shift leads to rupture of the ring-shaped pattern of the power-density distribution.
We have investigated the propagation dynamics of the circular Airy Gaussian vortex beams (CAGVBs) in a (2+1)-dimesional optical system discribed by fractional nonlinear Schrodinger equation (FNSE). By combining fractional diffraction with nonlinear e
We introduce axisymmetric Airy-Gaussian vortex beams in a model of an optical system based on the (2+1)-dimensional fractional Schrodinger equation, characterized by its Levy index (LI). By means of numerical methods, we explore propagation dynamics
In this letter, we introduce a new class of light beam, the circular symmetric Airy beam (CSAB), which arises from the extensions of the one dimensional (1D) spectrum of Airy beam from rectangular coordinates to cylindrical ones. The CSAB propagates
The rich optical properties of transition metal dichalcogenide monolayers (TMD-MLs) render these materials promising candidates for the design of new optoelectronic devices. Despite the large number of excitonic complexes in TMD-MLs, the main focus h
Fractional vortex beams (FVBs) with non-integer topological charges attract much attention due to unique features of propagations, but there still exist different viewpoints on the change of their total vortex strength. Here we have experimentally de