ﻻ يوجد ملخص باللغة العربية
Fractional vortex beams (FVBs) with non-integer topological charges attract much attention due to unique features of propagations, but there still exist different viewpoints on the change of their total vortex strength. Here we have experimentally demonstrated the distribution and number of vortices contained in FVBs at Fraunhofer diffraction region. We have verified that the jumps of total vortex strength for FVBs happens only when non-integer topological charge is before and after (but very close to) any even integer number, which originates from two different mechanisms for generation and movement of vortices on focal plane. Meanwhile, we have also measured the beam propagation factor (BPF) of such FVBs, and have found that their BPF values almost increase linearly in one component and oscillate increasingly in another component. Our experimental results are in good agreement with numerical results.
We theoretically and experimentally studied a novel class of vortex beams named open vortex beams (OVBs). Such beams are generated using Gaussian beams diffracted by partially blocked fork-shaped gratings (PB-FSGs).The analytical model of OVBs in the
We have experimentally investigated the evolution properties of multiramp fractional vortex beams (MFVBs) in free space, by using a fundamental Gaussian beam reflecting from a phase-modulated spatial light modulator. The issue about the total vortex
We have derived the corresponding equations and found their solutions both for nonparaxial and paraxial beams. The paraxial solutions we have presented in the form of the generalized Hermite-Gaussian beams propagating perpendicular to the optical axi
Harnessing the spontaneous emission of incoherent quantum emitters is one of the hallmarks of nano-optics. Yet, an enduring challenge remains-making them emit vector beams, which are complex forms of light associated with fruitful developments in flu
According to Rytov approximation theory, we derive the analytical expression of the detection probability of the autofocusing Airy beam (AAB) with powerexponent-phase carrying orbital angular momentum (OAM) mode, AAB-PEPV. We analyze the influence of