ترغب بنشر مسار تعليمي؟ اضغط هنا

Binarized Aggregated Network with Quantization: Flexible Deep Learning Deployment for CSI Feedback in Massive MIMO System

136   0   0.0 ( 0 )
 نشر من قبل Zhilin Lu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive multiple-input multiple-output (MIMO) is one of the key techniques to achieve better spectrum and energy efficiency in 5G system. The channel state information (CSI) needs to be fed back from the user equipment to the base station in frequency division duplexing (FDD) mode. However, the overhead of the direct feedback is unacceptable due to the large antenna array in massive MIMO system. Recently, deep learning is widely adopted to the compressed CSI feedback task and proved to be effective. In this paper, a novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance with network aggregation and parametric rectified linear unit (PReLU) activation. The practical deployment of the feedback network in the communication system is also considered. Specifically, the elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations. Besides, the network binarization technique is combined with the feature quantization for lightweight and practical deployment. Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks, providing a neat feedback solution with high performance, low cost and impressive flexibility.



قيم البحث

اقرأ أيضاً

121 - Yuyao Sun , Wei Xu , Le Liang 2021
To fully exploit the advantages of massive multiple-input multiple-output (m-MIMO), accurate channel state information (CSI) is required at the transmitter. However, excessive CSI feedback for large antenna arrays is inefficient and thus undesirable in practical applications. By exploiting the inherent correlation characteristics of complex-valued channel responses in the angular-delay domain, we propose a novel neural network (NN) architecture, namely ENet, for CSI compression and feedback in m-MIMO. Even if the ENet processes the real and imaginary parts of the CSI values separately, its special structure enables the network trained for the real part only to be reused for the imaginary part. The proposed ENet shows enhanced performance with the network size reduced by nearly an order of magnitude compared to the existing NN-based solutions. Experimental results verify the effectiveness of the proposed ENet.
Massive MIMO wireless FDD systems are often confronted by the challenge to efficiently obtain downlink channel state information (CSI). Previous works have demonstrated the potential in CSI encoding and recovery by take advantage of uplink/downlink r eciprocity between their CSI magnitudes. However, such a framework separately encodes CSI phase and magnitude. To improve CSI encoding, we propose a learning-based framework based on limited CSI feedback and magnitude-aided information. Moving beyond previous works, our proposed framework with a modified loss function enables end-to-end learning to jointly optimize the CSI magnitude and phase recovery performance. Simulations show that the framework outperforms alternate approaches for phase recovery over overall CSI recovery in indoor and outdoor scenarios.
Channel state information (CSI) feedback is critical for frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems. Most conventional algorithms are based on compressive sensing (CS) and are highly dependent on the level of chan nel sparsity. To address the issue, a recent approach adopts deep learning (DL) to compress CSI into a codeword with low dimensionality, which has shown much better performance than the CS algorithms when feedback link is perfect. In practical scenario, however, there exists various interference and non-linear effect. In this article, we design a DL-based denoise network, called DNNet, to improve the performance of channel feedback. Numerical results show that the DL-based feedback algorithm with the proposed DNNet has superior performance over the existing algorithms, especially at low signal-to-noise ratio (SNR).
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division d uplexing systems is of great importance. Recently, deep learning (DL)-based CSI feedback has shown considerable potential. However, the existing DL-based explicit feedback schemes are difficult to deploy because current fifth-generation mobile communication protocols and systems are designed based on an implicit feedback mechanism. In this paper, we propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules. By using environment information, the NNs can achieve a more refined mapping between the precoding matrix and the PMI compared with codebooks. The correlation between subbands is also used to further improve the feedback performance. Simulation results show that, for a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations, respectively. For a wideband system with 52 RBs, overhead can be saved by 30.7% and 48.0% compared with Type II codebook when ignoring and considering extracting subband correlation, respectively.
A major challenge to implement the compressed sensing method for channel state information (CSI) acquisition lies in the design of a well-performed measurement matrix to reduce the dimension of sparse channel vectors. The widely adopted randomized me asurement matrices drawn from Gaussian or Bernoulli distribution are not optimal. To tackle this problem, we propose a fully data-driven approach to optimize the measurement matrix for beamspace channel compression, and this method trains a mathematically interpretable autoencoder constructed according to the iterative solution of sparse recovery. The obtained measurement matrix can achieve near perfect CSI recovery with fewer measurements, thus the feedback overhead can be substantially reduced.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا