ﻻ يوجد ملخص باللغة العربية
Massive multiple-input multiple-output (MIMO) is one of the key techniques to achieve better spectrum and energy efficiency in 5G system. The channel state information (CSI) needs to be fed back from the user equipment to the base station in frequency division duplexing (FDD) mode. However, the overhead of the direct feedback is unacceptable due to the large antenna array in massive MIMO system. Recently, deep learning is widely adopted to the compressed CSI feedback task and proved to be effective. In this paper, a novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance with network aggregation and parametric rectified linear unit (PReLU) activation. The practical deployment of the feedback network in the communication system is also considered. Specifically, the elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations. Besides, the network binarization technique is combined with the feature quantization for lightweight and practical deployment. Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks, providing a neat feedback solution with high performance, low cost and impressive flexibility.
To fully exploit the advantages of massive multiple-input multiple-output (m-MIMO), accurate channel state information (CSI) is required at the transmitter. However, excessive CSI feedback for large antenna arrays is inefficient and thus undesirable
Massive MIMO wireless FDD systems are often confronted by the challenge to efficiently obtain downlink channel state information (CSI). Previous works have demonstrated the potential in CSI encoding and recovery by take advantage of uplink/downlink r
Channel state information (CSI) feedback is critical for frequency division duplex (FDD) massive multi-input multi-output (MIMO) systems. Most conventional algorithms are based on compressive sensing (CS) and are highly dependent on the level of chan
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division d
A major challenge to implement the compressed sensing method for channel state information (CSI) acquisition lies in the design of a well-performed measurement matrix to reduce the dimension of sparse channel vectors. The widely adopted randomized me