ﻻ يوجد ملخص باللغة العربية
Given the proliferation of wireless sensors and smart mobile devices, an explosive escalation of the volume of data is anticipated. However, restricted by their limited physical sizes and low manufacturing costs, these wireless devices tend to have limited computational capabilities and battery lives. To overcome this limitation, wireless devices may offload their computational tasks to the nearby computing nodes at the network edge in mobile edge computing (MEC). At the time of writing, the benefits of MEC systems have not been fully exploited, predominately because the computation offloading link is still far from perfect. In this article, we propose to enhance MEC systems by exploiting the emerging technique of reconfigurable intelligent surfaces (RIS), which are capable of `reconfiguring the wireless propagation environments, hence enhancing the offloading links. The benefits of RISs can be maximized by jointly optimizing both the RISs as well as the communications and computing resource allocations of MEC systems. Unfortunately, this joint optimization imposes new research challenges on the system design. Against this background, this article provides an overview of RIS-assisted MEC systems and highlights their four use cases as well as their design challenges and solutions. Finally, their performance is characterized with the aid of a specific case study, followed by a range of future research ideas.
In this paper, we explore optimization-based and data-driven solutions in a reconfigurable intelligent surface (RIS)-aided multi-user mobile edge computing (MEC) system, where the user equipment (UEs) can partially offload their computation tasks to
Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising technique to provide both enhanced computational capability and sustainable energy supply to massive low-power wireless devices. However, its energy consumption become
Reconfigurable intelligent surface (RIS) has emerged as a promising technology for achieving high spectrum and energy efficiency in future wireless communication networks. In this paper, we investigate an RIS-aided single-cell multi-user mobile edge
Space information networks (SIN) are facing an ever-increasing thirst for high-speed and high-capacity seamless data transmission due to the integration of ground, air, and space communications. However, this imposes a new paradigm on the architectur
By reconfiguring the propagation environment of electromagnetic waves artificially, reconfigurable intelligent surfaces (RISs) have been regarded as a promising and revolutionary hardware technology to improve the energy and spectrum efficiency of wi