ﻻ يوجد ملخص باللغة العربية
The bulk-to-boundary dictionary for 4D celestial holography is given a new entry defining 2D boundary states living on oriented circles on the celestial sphere. The states are constructed using the 2D CFT state-operator correspondence from operator insertions corresponding to either incoming or outgoing particles which cross the celestial sphere inside the circle. The BPZ construction is applied to give an inner product on such states whose associated bulk adjoints are shown to involve a shadow transform. Scattering amplitudes are then given by BPZ inner products between states living on the same circle but with opposite orientations. 2D boundary states are found to encode the same information as their 4D bulk counterparts, but organized in a radically different manner.
The 4D 4-point scattering amplitude of massless scalars via a massive exchange is expressed in a basis of conformal primary particle wavefunctions. This celestial amplitude is expanded in a basis of 2D conformal partial waves on the unitary principal
We review recent progress in operator algebraic approach to conformal quantum field theory. Our emphasis is on use of representation theory in classification theory. This is based on a series of joint works with R. Longo.
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point fun
We extend the work of Hellerman (arxiv:0902.2790) to derive an upper bound on the conformal dimension $Delta_2$ of the next-to-lowest nontrival primary operator in unitary two-dimensional conformal field theories without chiral primary operators. The
Krylov complexity, or K-complexity for short, has recently emerged as a new probe of chaos in quantum systems. It is a measure of operator growth in Krylov space, which conjecturally bounds the operator growth measured by the out of time ordered corr