ﻻ يوجد ملخص باللغة العربية
The 4D 4-point scattering amplitude of massless scalars via a massive exchange is expressed in a basis of conformal primary particle wavefunctions. This celestial amplitude is expanded in a basis of 2D conformal partial waves on the unitary principal series, and then rewritten as a sum over 2D conformal blocks via contour deformation. The conformal blocks include intermediate exchanges of spinning light-ray states, as well as scalar states with positive integer conformal weights. The conformal block prefactors are found as expected to be quadratic in the celestial OPE coefficients.
The basic ingredient of CCFT holography is to regard four-dimensional amplitudes describing conformal wave packets as two-dimensional conformal correlation functions of the operators associated to external particles. By construction, these operators
We study exponentiated soft exchange in $d+2$ dimensional gauge and gravitational theories using the celestial CFT formalism. These models exhibit spontaneously broken asymptotic symmetries generated by gauge transformations with non-compact support,
We show how to refine conformal block expansion convergence estimates from hep-th/1208.6449. In doing so we find a novel explicit formula for the 3d conformal blocks on the real axis.
The bulk-to-boundary dictionary for 4D celestial holography is given a new entry defining 2D boundary states living on oriented circles on the celestial sphere. The states are constructed using the 2D CFT state-operator correspondence from operator i
We continue to develop the holographic interpretation of classical conformal blocks in terms of particles propagating in an asymptotically $AdS_3$ geometry. We study $n$-point block with two heavy and $n-2$ light fields. Using the worldline approach