ﻻ يوجد ملخص باللغة العربية
We complete the program of 2012.15792 about perturbative approaches for $mathcal{N}=2$ superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of supersymmetric localization. We compute Wilson loop vacuum expectation values, correlators of multiple coincident Wilson loops and one-point functions of chiral operators in presence of them acting as superconformal defects. We extend this analysis to the most general case considering chiral operators and multiple Wilson loops scattered in all the possible ways among the vector multiplets of the quiver. Finally, we identify twisted and untwisted observables which probe the orbifold of $AdS_5times S^5$ with the aim of testing possible holographic perspectives of quiver theories in $mathcal{N}=2$.
We consider a family of $mathcal{N}=2$ superconformal field theories in four dimensions, defined as $mathbb{Z}_q$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, us
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular
We consider $mathcal{N}=2$ superconformal quiver gauge theories in four dimensions and evaluate the chiral/anti-chiral correlators of single-trace operators. We show that it is convenient to form particular twisted and untwisted combinations of these
In $mathcal N geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomolnyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson l
As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $mathcal N=2$ 4d superconformal models we consider two special theories with gauge groups $SU(N)$ and $Sp(2N)$. They c